
Published as a conference paper at ICLR 2024

LATENTCBF: A CONTROL BARRIER FUNCTION IN
LATENT SPACE FOR SAFE CONTROL

Somnath Sendhil Kumar1 Qin Lin2 John M. Dolan3

1IIT (BHU), Varanasi 2Cleveland State University 3Carnegie Mellon University

ABSTRACT

Safe control is crucial for safety-critical autonomous systems that are deployed
in dynamic and uncertain environments. Quadratic-programming-control-barrier-
function (QP-CBF) is becoming a popular tool for safe controller synthesis. Tra-
ditional QP-CBF relies on explicit knowledge of the system dynamics and access
to all states, which are not always available in practice. We propose LatentCBF
(LCBF), a control barrier function defined in the latent space, which only needs
an agent’s observations, not full states. The transformation from observations
to latent space is established by a Lipschitz network-based AutoEncoder. In ad-
dition, the system dynamics and control barrier functions are all learned in the
latent space. We demonstrate the efficiency, safety, and robustness of LCBFs in
simulation for quadrotors and cars.

1 INTRODUCTION

Many safety-critical robotic systems are deployed in dynamic and uncertain environments, such as
autonomous cars, delivery drones, etc. To provably guarantee the safe control of these robots is chal-
lenging. Quadratic programming-control-barrier-function (QP-CBF), which solves an optimization
problem with safety as a hard constraint online, is becoming a popular tool for safe controller synthe-
sis. Thanks to the forward invariant set property, the trajectories of a dynamic system can be assured
to stay in a safe set over an infinite time horizon Ames et al. (2014; 2016). The primary challenge in
existing research lies in the construction of a CBF. Presently, numerous works depend on manually
crafting CBFs, which proves effective for simple systems. However, when additional factors such as
the relative degree of nonlinear dynamics Xiao & Belta (2021) and constraints arising from control
limits come into play Liu et al. (2023), the task of manual design becomes increasingly complex.
In light of these complexities, a data-driven approach for automating CBF synthesis emerges as a
promising alternative.

Another significant limitation of existing works is that the theoretical safety assurances provided by
CBFs are based on the presumption that all states are accessible within the dynamic model and the
environment Chen et al. (2023); Dean et al. (2021). This creates a significant gap when applying
CBF theory in practical scenarios, especially in the context of many robotic systems that rely on
sensors or images as inputs, where obtaining ground truth states is often impossible.

This work presents a unified control schema that employs a data-driven CBF, neural dynamics, and a
reinforcement learning policy all in a unified latent space. The data-driven CBF utilizes a Lipschitz
neural network (NN) Anil et al. (2019), effectively eliminating the need for manual design. A
reinforcement learning schema is adopted to adaptively compensate uncertainty of a dynamic model.

The contributions of our paper can be summarized as follows:

• Utilize Lipschitz networks for an end-to-end control problem and demonstrate its robust
and utility in our novel framework.

• To the best of our knowledge, we are the first to propose a unified control architecture
defined in latent space, which employs a neural CBF, a control affine dynamics model and
a neural policy.

The rest of this paper is organized as follows. Related work is discussed in Sec. 2. We elaborate on
the LatentCBF in Sec. 3. The results are in Sec. 4. Conclusions and future work are in Sec. 5.

1

Published as a conference paper at ICLR 2024

2 RELATED WORKS

We will briefly review the most important related works in two main categories:

1) Barrier functions for safety certificates: Dawson et al. (2022a),Zhang et al. (2023) Dawson et al.
(2023b) Tan et al. (2023) and Lindemann et al. (2021) proposes a neural barrier function to represent
the safe set. It is only used for verifying the state, unlike CBF; safety certificates are not used for
controller synthesis.

2) Barrier functions for controller synthesis: Dawson et al. (2022b); Xiao et al. (2022; 2021) uses
NN-based barrier functions. However, the dynamics models are known. Xiao et al. (2021) proposes
BarrierNet, which requires an available dynamics model and pre-defined Hessian and linear cost
matrices for the QP. Our approach can learn system dynamics and optimal Hessian and linear cost
matrices for the QP. Dawson et al. (2022b) proposes rCBLF-QP, which learns a Lyapunov function
for the QP via exploration. The major limitation is that the typical definition of a barrier function
requires state information that is not generally available in real-world scenarios. Our approach only
requires the observation space. We compare our approach with rCBLF-QP and BarrierNet in
our experiments.

3) Differentiable QP solver: Amos & Kolter (2017) formulates how a QP-based optimization can be
added as a differentiable layer for the last layer of a NN. It proposes to learn the Hessian and linear
cost matrices with a cost function by backpropagating through the network. Xiao et al. (2021) is a
similar work but uses a high-order CBF (HOCBF). Its limitation, again, is the requirement of fully
available state information.

Figure 1: The illustration of the whole proposed framework. A simple barrier function is visualized
with two features i.e., the coordinates as an example.

3 LATENT CONTROL BARRIER FUNCTION

3.1 PRELIMINARY

The basis of our formulation is the latent space learned using a Lipschitz AutoEncoder. We define
the following encoder E(.) and decoder D(.):

z = E(x)

x̂ = D(z)
(1)

where E : X → Z, D : Z → X̂ . The original observation space X and X̂ are both in the Euclidean
space ∈ RD. The latent space Z ∈ Rd. The latent space is used by individual modules of our
framework, which will be explained in the upcoming sections. Our encoder is based on a Lipschitz
NN:

2

Published as a conference paper at ICLR 2024

|E(x1)− E(x2)| ≤ C|x1 − x2|
|z1 − z2| ≤ C|x1 − x2|

(2)

where z1, z2 ∈ Z, x1, x2 ∈ X , and C is a Lipschitz constant. More details on the architecture, the
construction and the advantages of our autoencoder are given in Sec. 3.3.

We assume a general nonlinear control-affine system in the learned latent space as follows:

ż = f(z, θf) + g(z, θg)u. (3)

wheref : Rd → Rd, g : Rd → Rd×q , and u ∈ Rq . f(.) and g(.) are respectively parameterized by
θf and θg using NNs and learned in a pipeline explained in Sec. 3.4.

A control barrier function in the latent space is defined using a Lipschitz NN B(z, θB) : Rd → R.
The safety is guaranteed by establishing the following constraint Ames et al. (2016):

Ḃ(z) > −αB(z) (4)

where α is a Lipschitz class K function, which can be chosen as a user-defined constant as its
simplest form Ames et al. (2014). Eq. 4 is expanded as follows:

Lf(z,θf)B(z) + Lg(z,θg)B(z)u(t) > −αB(z) (5)

where Lf(z,θf)B(z) = dB(z,θB)
dz f(z, θf) and Lg(z,θg)B(z) = dB(z,θB)

dz g(z, θg) are Lie derivatives.

Integrating the constraint Eq. 5 into a quadratic program, a QP-CBF controller synthesis can be
obtained by solving the following QP problem online:

min
u

uTH(z, θH)u+ uTF (z, θF)

s.t. Lf(z,θf)B(z) + Lg(z,θg)B(z)u+ αB(z) > 0

umin ≤ u ≤ umax

(6)

where umin and umax are control limits. H(.) and F (.) are Hessian and linear cost matricies.
H(z, θH) : Rd → Rq×q and F (z, θF) : Rd → Rq×1 are matrices and parameterized by θH , and θF
respectively. The architecture and training of B(z, θB), H(z, θH), and F (z, θF) will be explained
in Sec. 3.5. The nominal controller in QP is a policy based on a shallow NN in the latent space,
i.e., π(z). There are two policies, each designated for an individual phase. 1) πadapt: This is used
to span over an ample amount of observation space to collect enough data samples for learning the
latent space and the barrier function; 2) πoptimal: This is the optimal policy trained for the reward
of the task in the environment.

π : Rd → Rc;u = π(z, θπ) (7)

More architectural details about the reward and training pipeline are given in Sec. 3.6.

3.2 OVERVIEW

Our proposed framework is illustrated in Fig. 1. The basic flow can be explained by the following
steps: 1) The observation is embedded into the latent space using a Lipschitz encoder (see Eq. 1
and the blocks in yellow and blue in Fig. 1). 2) The latent space then is fed into the control pipeline
consisting of a policy in Eq. 7, which outputs nominal control signal u (see the purple NN). 3) The
Lipschitz continuous CBF (see Eq. 4 and the green NN) and the dynamics in Eq. 3 are also defined
in the latent space. 4) All of the aforementioned components are sent to the overall optimization in
the QP layer (c.f., Eq. 6) that optimizes the control signal using the Hessian and linear cost matrices
described in 3.1. The final optimized control action is u∗. Note that the pipeline only represents
the forward pass; the following sections on individual modules explain their backpropagation. The
gradients from all the modules are accumulated in the encoder for learning an optimal representation.

3

Published as a conference paper at ICLR 2024

Figure 2: The illustration of our AutoEncoder design.

3.3 LEARNING LIPSCHITZ AUTOENCODER

The AutoEncoder is an essential component in our framework, since all other components are es-
tablished in a latent space. The necessity of Lipschitz continuous autoencoder is to have barrier
function that adheres to its original formulation given in Ames et al. (2016). It requires the barrier
function to be a Lipschitz continuous function, but all the works on neural barrier function do not
emphasize this constraint for the function. We conduct experiments in 4.2 and find out that our
architecture that approximates the Lipschitz criterion is much more suitable for the task of defining
a neural barrier function over a traditional network of similar architecture.

To obtain a Lipschitz network-based AutoEncoder Anil et al. (2019), we use an architecture similar
to Ghifary et al. (2016), which has a classification head in the latent space to backpropagate on the
encoder network. Such a design helps the autoencoder in domain adaptation in events of abrupt
changes occurring due to training of the control pipeline. The proposed architecture is illustrated in
Fig. 2. Following the dashed lines, the loss is backpropagated from all the networks using latent
space and accumulates into the AutoEncoder.

The AutoEncoder network is trained by optimizing the following reconstruction loss given by
Lrecon =

∑nbatch

i=1 |x̂i − xi|. The Autoencoder can be flexibly designed for any kind of input,
e.g., simple measurement features or even images, by replacing a typical encoder for that modality
with specific layers for the Lipschitz network. For example, to get a Convolutional 2D layer, we can
replace it with the BjorckConv2D Anil et al. (2019), and for a Linear Dense layer, we can choose
BjorckLinear Anil et al. (2019). We have limited options for activations, the most popular choice
being MaxMin layer Anil et al. (2019).

3.4 LEARNING SYSTEM DYNAMICS

To learn f(.) and g(.) parameterized by NNs, we formulate a regression model. First, we expand
Eq. 3 to get the following form:

d(z)

dx

dx

dt
= f(z, θf) + g(z, θg)u (8)

where d(z)
dx is the gradient computed in the backward pass of the encoder E (see Eq. 1). For a given

observation x0, dz
dx |x0 = d(E(x))

dx |x0 is easily calculated by backpropagation. dx
dt |x0 can be computed

from the numeric difference between two consecutive observations. Hence the estimated values
dz
dt estim

will serve as labels for optimizing dynamics functions f(z, θf) and g(z, θg) in supervised
learning approach using 8 with the following loss:

Ldyn =

nbatch∑
i=1

∣∣∣∣dzdt estim,i
− f(z, θf)i − g(z, θg)iui

∣∣∣∣ (9)

4

Published as a conference paper at ICLR 2024

3.5 LEARNING BARRIER NETWORK

We construct a CBF parameterized by a Lipschitz network called Barrier Network. In our experi-
ments, we use four Bjorck Linear Layers and the MaxMin activation function.

To learn the cost matrices H(z, θH) and F (z, θF) in Eq. 6, we use a policy distillation technique
Robey et al. (2020), where the parameters are updated based on a loss function l(.) measuring the
similarity between the output of the latentCBF and expert trajectories from πoptimal (see Eq. 7),
which satisfies Ztraj ∈ Zsafe.

θ = argmax
θ

E[l(πoptimal(z), u
∗)] (10)

The gradient for this loss can be computed using the technique in Amos & Kolter (2017). It com-
putes the Lagrangian of the qp formulation(we use our CBF QP formulation 6) and refactors it to a
differentiable matrix. In our case, using the same technique, we get 11.[

du
dλ

]
=

[
H GTD(λ∗)
G D(Gu∗ − h)

]−1 [
(∂l
∂u∗)

T

0

]
(11)

where G = −Lg(z,θg)B(z), h = Lf(z,θf)B(z) + αB(z), D(·) creates a diagonal matrix, and λ is
the dual variable for the QP formulation. Eq. 6 can be rewritten as follows:

min
u

uTHu+ FTu

s.t. Gu < h
(12)

Once we obtain du and dλ from Eq. 11, we can optimize parameterized H(z, θH) and F (z, θF)by

▽H l =
1

2
(duu

∗T + u∗dTu) (13)

▽F l = du (14)

Now we discuss how to obtain an optimal barrier function. A straightforward mechanism to design
the reward r(x, u) is having a positive reward for reaching the goal, a negative reward for colliding
with obstacles or completely deviating from the objective, and otherwise zero. This is generally the
reward structure in the control problem, which is also consistent with our environments.

With such a reward design, we can have an annotating algorithm that identifies whether a particular
state is safe or unsafe. For any x ∈ X , after the transformation to latent space under E : X → Z,
the agent’s trajectory Xtraj becomes Ztraj in the latent space. Hence for z ∼ Ztraj

z ∈

Zsafe, if

xterm

E
x(t)∼Xtraj

[∑
r(x(t), u(t))

]
− p+ ≥ 0

Zunsafe, if
xterm

E
x(t)∼Xtraj

[∑
r(x(t), u(t))

]
− p− < 0

(15)

where
xterm

E
x(t)∼Xtraj

[
∑

r(x(t), u(t))] is the expected return or cumulative reward signal along the

trajectory Xtraj , xterm is the terminal state of an episode or trajectory, p+ is the minimum threshold
to classify a trajectory safe, and p− is the maximum threshold to classify a trajectory to be unsafe.
The values of p+ and p− are hyperparameters. In our experiments we set p+ = 0.6 ∗ rmax and
p− = 0.2 ∗ rmin, where rmax = maxX r(x(t), u(t)) and rmin = minX r(x(t), u(t)) can be
obtained from the environment. With this information and data collected from the sampling phase
using πadapt, we have x ∈ Xtraj . We have the following loss function for training B(z, θB):

LB =
∑

z∈Zsafe

|1−B(z, θB)|+
∑

z∈Zunsafe

|B(z, θB) + 1| (16)

5

Published as a conference paper at ICLR 2024

3.6 POLICY TRAINING

We employ a policy gradient-based reinforcement learning algorithm for training the nominal con-
troller πoptimal. πadapt: This is mainly for data collection for training the latent space and the
barrier function. πoptimal: The policy is entirely trained with off-policy data as the action space is
modified by the LCBF. We use DDPG Lillicrap et al. (2015), as it works well with both on-policy
and off-policy training. The training is divided into two phases, one with πadapt before reaching the
convergence point of the latent space and the barrier function. After this, we switch to phase two
with πoptimal to learn a policy safely with the control barrier function. A detailed ablation on the
choice of πadapt and performance of the framework with different πoptimal is given in A.8.

4 EXPERIMENTS

4.1 COMPARISON TO STATE OF THE ART NEURAL CBF APPROACHES

We compare our algorithm with rCLBF-QP Dawson et al. (2022b) and BarrierNet Xiao et al. (2021)
under the same experiments mentioned in these two papers for consistency. For implementing
rCLBF-QP Dawson et al. (2022b), we utilized the official implementation, which is made pub-
licly available by the authors. We also train state estimators required by the two approaches. Both
approaches use predefined dynamics of the system, a predefined barrier function, and a cost func-
tion. we compare the number of episodes required to train such vision modules for state estimation
to the number of episodes required for LCBF to learn the latent space and barrier function. Details
of the exact experimental setup is given in A.1. We also compare the safety rate. The comparison is
summarized in Table 1.

Table 1: Tracking error comparison

Task2 Approach # episodes1 |x− xgoal|
Car trajectory tracking
Kinematic model (only sensor
data)

rCLBF-QP 136 0.8621
BarrierNet 148 0.6432

LatentCBF (ours) 92 0.7165

Car trajectory tracking Sideslip
model (only sensor data)

rCLBF-QP 132 0.9439
BarrierNet 152 0.6957

LatentCBF (ours) 92 0.7165

3D Quadrotor (only sensor data)
rCLBF-QP 104 0.5321
BarrierNet 84 0.6417

LatentCBF (ours) 72 0.4967

Table 2: Safety rate comparison

Environment3 Controller # episodes1 Safety Rate
2D Quadrotor with obstacles
(image input of the environment)

rCLBF-QP 224 78%
BarrierNet 192 81%

LCBF 108 86%

3D Quadrotor with an obstacle
(image and sensor data as input)

rCLBF-QP 272 98%
BarrierNet 208 100%

LCBF 144 100%

All the tasks are individually explained in the subsection below. We also present a Visualization of
the Barrier Function learned B(z), by applying NMF Lee & Seung (2000) on the observation space
to embed into a 2D space corresponding to which B(z) is plotted in a 3D surface. Futher details of
application of NMF for visualization is present in A.2. Furthermore, the safe and unsafe samples are
plotted to visualize in which region they lie according to the B(z). For all the experiments training
plots are available at A.7

2For trajectory tracking, we compute the maximum tracking error over the trajectory
1Individual epoch contains four episodes hence the number of episodes is multiple of 4.
3For the quadrotor, we compute % of trials reaching the goal with tolerance δ = 0.25 without collision

6

Published as a conference paper at ICLR 2024

(a) (b)

(c) (d)

Figure 3: Visualization of B(z) for the different experiments and projections of safe and unsafe
samples on contour and 3D surface view. (a) Car Trajectory tracking experiment; (b) 3D quadrotor
without obstacles; (c) 2D quadrotor with obstacles; (d) 3D quadrotor with obstacles

Car Trajectory tracking. From Dawson et al. (2022b), this task involves training different func-
tions and matrices for rCBLF-QP and BarrierNet, aiming to trace the ego vehicle’s given trajectory.
BarrierNet performs best in tracking error, but our approach converges fastest, indicating a clear
separation between safe and unsafe sets, as visualized in Fig. 3a. For more details on experimental
setup of rCBLF-QP and BarrierNet refer Appendix. A.3

3D Quadrotor without obstacle. In this task, derived from Dawson et al. (2023a), our approach
surpasses others in convergence and tracking error, dealing with high model dynamic uncertainty
and using only sensor data. The latent space accurately represents the safe space, depicted in Fig.
3b; it is clear that the learned latent space is able to represent the safe space within the two concave
surfaces. Additional experimental setup can be found in Appendix. A.4

2D Quadrotor with obstacles. This task involves a 2D quadcopter navigating around obstacles
from Dawson et al. (2022b); Ho et al. (2020). State estimations and barrier function learning limit the
system, requiring numerous iterations for convergence, but our approach still outperforms, showing
well-separated safe and unsafe regions in Fig. 3c. Futher details of the task and description about
the complexity of the task are in Appendix. A.5

3D Quadrotor with obstacles This task, set in the PyBullet gym environment, provides both ground
truth and depth images as the quadrotor’s observations and poses a substantial challenge due to
the high dimensionality of the input space. Our approach effectively surpasses both the rCBLF-
QP and BarrierNet in terms of safety rate and the required number of episodes for training. The
detailed depiction in Fig. 3d of the barrier function appears non-convex but exhibits convexity in
the latent space Z, indicated by the high correlation between the safe and unsafe samples and their
corresponding regions due to the construction of B(z) using a Lipschitz network. Futher details can
be found in Appendix. A.6

4.2 LIPSCHITZ NETWORK FOR SYNTHESIS OF BARRIER FUNCTION

Our investigation illuminates the deficiencies inherent in prevalent neural barrier approaches, pri-
marily their reliance on standard deep learning layers which neglect the incorporation of any Lip-
schitz criterion during the learning of barrier functions. To rectify this, we implemented Lipschitz
Neural Networks (NNs) within the Autoencoder and control policy framework. Experiments were
structured to facilitate a comparison between Lipschitz and standard networks, assessing their pro-
ficiency in synthesizing barrier functions within environments previously detailed, such as Car Tra-

7

Published as a conference paper at ICLR 2024

(a) (b)

(c) (d)

(e) (f)

Figure 4: Visualization of B(z) and ∇B(z) its gradient map for the different experiments and
surface view. (a) Non Lipschitz network (b) Lipschitz network for B(x, y) = 24 − (x4 + y4);
(c) Non Lipschitz network (d) Lipschitz network for Car Trajectory tracking experiment; (e) Non
Lipschitz network (f) Lipschitz network for 3D quadrotor without obstacles;

jectory tracking and 3D Quadrotor without obstacles Fig. 4c, Fig. 4e. Additional experiment with
B(x, y) = 24 − (x4 + y4) (typical CBF definition used for a cuboidal safety region across a 2D
obstacle) were conducted to affirm that our framework does not restrict the synthesis of optimal
barrier functions utilizing standard deep learning layers.

The barrier function B(z), is pivotal for transitioning control signals or actions to safer alternatives,
necessitating the computation of gradients by the QP solver from Amos & Kolter (2017). It is
imperative that an optimal barrier function is differentiable and devoid of any singularities in ∇B(z).
The Lipschitz criterion guarantees this absence of singularities, the effectiveness of which is visually
substantiated in our results Fig. 4. Our findings reveal that standard networks encounter singularities
when the value of B(z) approaches zero Fig. 4a, Fig. 4c, Fig. 4e, posing a significant risk as
Control Barrier Functions (CBFs) are crucial at the transition point of B(z) ≥ 0. This underscores
the relevance and appropriateness of Lipschitz Networks for our proposed framework, highlighting
their role in enhancing the reliability and safety of neural barrier approaches.

4.3 FRAMEWORK MODULARITY ASSESSMENT

To assess the modularity of our approach, we integrated LatentCBF with existing works utilizing
Encoder and Decoder architecture for complex control tasks, choosing the Carla public leaderboard
CARLA Team (2020) as a benchmark against the state-of-the-art InterFuser Shao et al. (2022). Inter-
Fuser uses a transformer-based architecture and employs an explicitly defined safety controller lim-
ited by various heuristics. This is suboptimal in critical scenarios as it only downsamples waypoints
into a set of safe waypoints without any modification. To validate the versatility of our work with
diverse tasks and architectures, we aligned our LatentCBF with the InterFuser framework, incorpo-
rating modifications like Lipschitz Transformer layers Qi et al. (2023) to maintain fair comparison.
The same methodology as InterFuser paper Shao et al. (2022) was followed, with additional loss16
for LatentCBF. A comparative evaluation and an ablation study highlights enhancements brought by
LatentCBF in terms of safety.

8

Published as a conference paper at ICLR 2024

Table 3: Performance comparison on the public CARLA leaderboard CARLA Team (2020). All
three metrics are higher the better. Our LatentCBF based Interfuser is better than InterFuserShao
et al. (2022) in Route Completion and Infraction Score and close second for Driving score.

Method Driving Score Route Completion Infraction Score

LatentCBF based Interfuser with CBF
(ours)

74.23 91.21 0.88

InterFuser Shao et al. (2022) 76.18 88.23 0.84
LatentCBF based Interfuser without

CBF
56.29 73.13 0.74

Interfuser without safety controller 28.21 56.67 0.54
TCP Wu et al. (2022) 75.14 85.63 0.87

LAV Chen & Krähenbühl (2022) 61.85 94.46 0.64
TransFuser Chitta et al. (2022) 61.18 86.69 0.71

Latent TransFuser Chitta et al. (2022) 45.20 66.31 0.72
GRIAD Chekroun et al. (2023) 36.79 61.85 0.60

Rails Chen et al. (2021) 31.37 57.65 0.56
TARL Toromanoff et al. (2020) 24.98 46.97 0.52

NEAT Chitta et al. (2021) 21.83 41.71 0.65

Figure 5: Visualization of ∇B(z) , B(z) and projection of state trajectory into the new space. The
state trajectory is an episode of latentCBF based InterFuser from Carla public leaderboard

Integrating LatentCBF for Safety Controller into InterfuserShao et al. (2022) improves Route Com-
pletion and Infraction Score over the baseline, as evidenced by 3, while maintaining comparable
Driving Scores, indicating our approach’s adaptability without adverse effects. The enhanced base
policy, evidenced by studies foregoing CBF at inference time, diversifies the training set with criti-
cal scenarios. Visualizations of the learnt barrier function (refer to 4.2 and Fig. 5) and the gradient
map, illustrate well-structured representation of safe and unsafe regions with minimal singularities,
affirming suitability for CBF-QP. The trajectory visualizations in the NMF projection space further
validate the efficiency of our approach in complex systems, handling transitions proficiently and
ensuring trajectories remain in the B(z) ≥ 0 region.

5 CONCLUSIONS

In this paper, we propose a novel framework utilizing LatentCBF, a control barrier function defined
in latent space for safe control. The significance is that only observations of robots are required
instead of access to the state space, which is not always available in practice. In our unified frame-
work, we deal with AutoEncoder learning, system dynamics learning, and Barrier network learning
all in latent space. Owing to the flexibility of representation learning using AutoEncoder, we expect
our framework to be more general for a wide range of robotic systems. We have demonstrated the
efficacy of our approach for autonomous driving benchmark in CARLA and other control affine
systems like car-like robots and quadrotors. In the future, we plan to utilize latent CBF as a modular
backbone to develop complex systems that could utilize the shared representation like multi-agent
systems and other complex environments that lack explicit safety controller defined.

9

Published as a conference paper at ICLR 2024

REFERENCES

Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based quadratic
programs with application to adaptive cruise control. In 53rd IEEE Conference on Decision and
Control, pp. 6271–6278. IEEE, 2014.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2016.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In Inter-
national Conference on Machine Learning, pp. 291–301. PMLR, 2019.

CARLA Team. CARLA Autonomous Driving Leaderboard. Online, 2020. URL https://
leaderboard.carla.org/. Accessed: 2021-02-11.

Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, and Fabien Moutarde. Gri: General
reinforced imitation and its application to vision-based autonomous driving. Robotics, 12(5),
2023. ISSN 2218-6581. doi: 10.3390/robotics12050127. URL https://www.mdpi.com/
2218-6581/12/5/127.

Di Chen, Vladlen Koltun, and Philipp Krähenbühl. Learning to drive from a world on rails. 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15570–15579, 2021. URL
https://api.semanticscholar.org/CorpusID:233481601.

Dian Chen and Philipp Krähenbühl. Learning from all vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17222–17231, June 2022.

Jinfeng Chen, Zhiqiang Gao, and Qin Lin. Robust control barrier functions for safe con-
trol under uncertainty using extended state observer and output measurement. arXiv preprint
arXiv:2308.13943, 2023.

Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat: Neural attention fields for end-to-end
autonomous driving. 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 15773–15783, 2021. URL https://api.semanticscholar.org/CorpusID:
237454606.

Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. Pattern Anal-
ysis and Machine Intelligence (PAMI), 2022.

Charles Dawson, Bethany Lowenkamp, Dylan Goff, and Chuchu Fan. Learning safe, generalizable
perception-based hybrid control with certificates. IEEE Robotics and Automation Letters, 7(2):
1904–1911, 2022a.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In 5th Annual Conference on Robot Learning, pp. 1724–1735.
PMLR, 2022b.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on
Robotics, 2023a.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on
Robotics, 39(3):1749–1767, 2023b. doi: 10.1109/TRO.2022.3232542.

Sarah Dean, Andrew Taylor, Ryan Cosner, Benjamin Recht, and Aaron Ames. Guaranteeing safety
of learned perception modules via measurement-robust control barrier functions. In Conference
on Robot Learning, pp. 654–670. PMLR, 2021.

10

https://leaderboard.carla.org/
https://leaderboard.carla.org/
https://www.mdpi.com/2218-6581/12/5/127
https://www.mdpi.com/2218-6581/12/5/127
https://api.semanticscholar.org/CorpusID:233481601
https://api.semanticscholar.org/CorpusID:237454606
https://api.semanticscholar.org/CorpusID:237454606

Published as a conference paper at ICLR 2024

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep
reconstruction-classification networks for unsupervised domain adaptation. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part IV 14, pp. 597–613. Springer, 2016.

Cherie Ho, Katherine Shih, Jaskaran Singh Grover, Changliu Liu, and Sebastian Scherer. “provably
safe” in the wild: Testing control barrier functions on a vision-based quadrotor in an outdoor en-
vironment. In 2nd RSS Workshop on Robust Autonomy: Tools for Safety in Real-World Uncertain
Environments (RSS 2020), 2020.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In
Proceedings of the 13th International Conference on Neural Information Processing Systems,
NIPS’00, pp. 535–541, Cambridge, MA, USA, 2000. MIT Press.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Lars Lindemann, Alexander Robey, Lejun Jiang, Stephen Tu, and N. Matni. Learning robust output
control barrier functions from safe expert demonstrations. ArXiv, abs/2111.09971, 2021. URL
https://api.semanticscholar.org/CorpusID:244463026.

Simin Liu, Changliu Liu, and John Dolan. Safe control under input limits with neural control barrier
functions. In Conference on Robot Learning, pp. 1970–1980. PMLR, 2023.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lip-
schitz continuity to vision transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cHf1DcCwcH3.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724, 2020. doi: 10.1109/
CDC42340.2020.9303785.

Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
driving using interpretable sensor fusion transformer. arXiv preprint arXiv:2207.14024, 2022.

Daniel C. H. Tan, Fernando Acero, Robert McCarthy, Dimitrios Kanoulas, and Zhibin Li. Value
functions are control barrier functions: Verification of safe policies using control theory, 2023.

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforcement
learning for urban driving using implicit affordances, 2020.

Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet strong baseline. In NeurIPS,
2022.

Wei Xiao and Calin Belta. High-order control barrier functions. IEEE Transactions on Automatic
Control, 67(7):3655–3662, 2021.

Wei Xiao, Ramin Hasani, Xiao Li, and Daniela Rus. Barriernet: A safety-guaranteed layer for neural
networks. arXiv preprint arXiv:2111.11277, 2021.

Wei Xiao, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, Ramin Hasani, and Daniela Rus.
Differentiable control barrier functions for vision-based end-to-end autonomous driving. arXiv
preprint arXiv:2203.02401, 2022.

Songyuan Zhang, Kunal Garg, and Chuchu Fan. Neural graph control barrier functions guided
distributed collision-avoidance multi-agent control. In 7th Annual Conference on Robot Learning,
2023. URL https://openreview.net/forum?id=VscdYkKgwdH.

11

https://api.semanticscholar.org/CorpusID:244463026
https://openreview.net/forum?id=cHf1DcCwcH3
https://openreview.net/forum?id=VscdYkKgwdH

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENTATION SETUP FOR NEURAL CBFS

We use images or a stack of images as the observation input to the encoder system, along with
sensor data when available. To keep the comparison fair, we use a NN that estimates the system
parameters from images and the sensor information. These networks are trained separately for
the particular environment and task to act as a state estimator wherever needed by the algorithms
we compare. We compare our algorithm with rCLBF-QP Dawson et al. (2022b) and BarrierNet
Xiao et al. (2021) under the same experiments mentioned in these two papers for consistency. For
implementing rCLBF-QP Dawson et al. (2022b), we utilized the official implementation, which is
made publicly available by the authors. For the state estimation and the vision module, we employed
a similar network used in Dawson et al. (2022a). For BarrierNet Xiao et al. (2021) implementation,
we replicated the same system by ourselves. For the Vision model, we employed the same structure
of modules as specified in Xiao et al. (2022). Both approaches use predefined dynamics of the
system, a predefined barrier function, and a cost function. While these require ground truth from the
system or a vision module to extract this information, we compare the number of episodes required
to train such vision modules for state estimation to the number of episodes required for LCBF to
learn the latent space and barrier function. We use experience from the same exploratory policy
without modifying the control signal with these algorithms. Here a model is said to be converged
when the test loss of these state estimators is less than a given threshold: 10−3. Our approach defined
convergence when the reconstruction loss was less than 10−4.

A.2 NON NEGATIVE MATRIX FACTORIZATION FOR VISUALING LATENT SPACE

Non-Negative Matrix Factorization (NMF)Lee & Seung (2000) is a technique widely used for
dimensionality reduction and feature extraction where the data representation is exclusively non-
negative. It decomposes a given non-negative matrix into two lower-dimensional non-negative ma-
trices, rendering it particularly suitable for visualizing high-dimensional data.

A.2.1 MATHEMATICAL FOUNDATION

Given a non-negative matrix V of dimension m×n, the goal of NMF is to find two non-negative ma-
trices W and H of dimensions m×k and k×n respectively, where k is the reduced dimensionality,
such that:

V ≈ WH

Here, each column of matrix W can be viewed as a basis vector, and each column of matrix H
represents the corresponding encoding or coefficient for the basis vectors in W .

A.2.2 OBJECTIVE FUNCTION

To find matrices W and H , NMF aims to minimize the following objective function which represents
the Frobenius norm of the difference between the original matrix V and the approximated matrix
WH:

min
W,H

||V −WH||2F

subject to W,H ≥ 0 (element-wise non-negativity).

A.2.3 DIMENSIONALITY REDUCTION

When reducing dimensionality to two features for visualization purposes, we set k = 2. In this case,
matrix W will have the dimensionality m×2 and matrix H will have the dimensionality 2×n. The
two columns of matrix W will represent the two new features in the reduced-dimensional space, and
each row of matrix H will represent the encoding of the original features in the reduced-dimensional
space.

12

Published as a conference paper at ICLR 2024

Visualization is accomplished by projecting the high-dimensional data onto the two-dimensional
space spanned by the two basis vectors (the columns of W). Each data point in the original high-
dimensional space is represented as a linear combination of the basis vectors, and its coefficients in
this linear combination serve as its coordinates in the two-dimensional visualization space.

In mathematical terms, for a data point represented by a column vector v in matrix V , its corre-
sponding two-dimensional representation is given by:

h = WT v

Here, h is a 2-dimensional vector whose components are the coordinates of the data point in the
reduced-dimensional visualization space.

A.3 EXPERIMENTAL SETUP FOR CAR TRAJECTORY TRACKING

This task, derived from Dawson et al. Dawson et al. (2022b), involved training a Lyapunov function
for rCBLF-QP and training the Hessian and linear cost matrix for BarrierNet. The task is designed
to trace a given trajectory to the ego vehicle. It is executed using two different vehicle dynamic
models: the kinematic model with and without sideslip. From these varied experiments, consistent
conclusions were derived, reinforcing the reliability of the results obtained.

A.4 EXPERIMENTAL SETUP FOR 3D QUADROTOR WITHOUT OBSTACLE

In this task, goal tracking is performed for a 3D quadcopter Dawson et al. (2023a), with only sensor
data being available. Detailed training was performed for a Lyapunov function for rCBLF-QP, cost
matrices for BarrierNet, and the Latent Space. This task, characterized by high uncertainty in model
dynamics, was pivotal in demonstrating the superiority of our approach in terms of convergence
speed and tracking error minimization.

A.5 EXPERIMENTAL SETUP FOR 2D QUADROTOR WITH OBSTACLES

This task is a reach-and-avoid problem for a quadcopter in a 2D space laden with obstacles Dawson
et al. (2022b); Ho et al. (2020). The robot’s observations are derived from a 2D image, with obsta-
cles consistently marked with a single color. For rCBLF-QP, a system extractor was developed to
locate the planar quadcopter in the 2D axis. The Lyapunov function was then trained by annotating
regions with obstacles as unsafe. For BarrierNet, rectangles were superimposed for the obstacles
after defining the same system extractor for location.

A.6 EXPERIMENTAL SETUP FOR 3D QUADROTOR WITH OBSTACLES

In this task, algorithms are challenged due to the elevated dimensionality of the input space. The Py-
Bullet gym environment is crucial as it allows the acquisition of ground truth for comparison along-
side the quadrotor’s observations, provided in the form of depth images. For both the rCBLF-QP
and BarrierNet, a state estimator was trained meticulously to ascertain the position of the drone rel-
ative to the rounded cube object utilizing both the RGBD image and the sensor data. Subsequently,
training was also conducted for the Lyapunov function for rCBLF-QP. In contrast, BarrierNet had
predefined cost functions as per Xiao et al. (2021), facilitating quicker learning of the Hessian and
the linear cost matrix. Our approach demonstrated superiority over both BarrierNet and rCBLF-QP
controllers in safety rate and the number of episodes required for training. The barrier function re-
vealed in Fig. 3d is notably non-convex in the embedded space from NMF, yet the high correlation
between the samples and the regions indicates its convexity in the latent space Z, as B(z) is formu-
lated using a Lipschitz network. All baseline approaches maintained default parameters for network
and optimization layers as specified in their corresponding papers.

A.7 TRAINING PLOTS

In Fig. 6, we present the learning plots for individual components in the pipeline, i.e., the Dynamics
model, Barrier Function, AutoEncoder and the policy. The grey dotted vertical line denotes the
checkpoint of models we use to evaluate and get the results for the experiments given in 4.

13

Published as a conference paper at ICLR 2024

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(a)
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(b)

0 20 40 60 80 100
−0.2

0.0

0.2

0.4

0.6

0.8

Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(c)
0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0 Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(d)

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(e)
0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0
Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(f)
.

Figure 6: Training plot for the given 6 tasks with losses or returns from individual elements. x-axis
is number of episodes and y-axis is the magnitude of individual metrics. (a) Car trajectory tracking
Kinematic model (b) Car trajectory tracking Sideslip model (c) 3D Quadrotor (only sensor data)
(d)2D Quadrotor with obstacles (e)3D Quadrotor with an obstacle (f) LatentCBF based Interfuser
with CBF on Carla leaderboard

14

Published as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0
Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(a)
0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0
Dynamics loss
Policy returns
Barrier fn loss
Reconstruction loss

(b)

Figure 7: Training plots for the comparison of pipeline learning using π1 and π2 as πadapt. x-axis is
number of episodes, y-axis is magnitude of value of the metrics and grey dotted vertical line is the
checkpoint used for evaluation.

A.8 ABLATION STUDY OF DIFFERENT POLICIES AND CBF

To demonstrate the robustness of the presented approach, we run a few experiments to understand the
choices of πadapt and πoptimal and its effects in the pipeline. We divide the set of experiments into
two categories of choices for 1) πadapt and 2)πoptimal. For being able to compare the performance,
we use Carla Leaderboard as the task, with LatentCBF based Interfuser as the Pipeline.

A.8.1 INFLUENCE OF πadapt

As the process of data collection is done by πadapt, this is similar to warmup training in many
reinforcement learning approaches. As the samples are initially used to train the Dynamics model,
Barrier Function and the AutoEncoder, it is very crucial to get sufficient samples of states that the
learning policy may encounter. Hence, we ideally would like to use a policy that has the closest
trajectory to the one the policy would explore while training. This is a challenging task. Hence, we
demonstrate the effect of πadapt with two policies.

• Expert Policy π1: For the given task of Carla Leaderboard, we have autopilot from the
official Leaderboard repository that we utilize as an Expert policy.

• Random Policy π2: For representing a random policy, we simply initiate a new policy and
do not train it prior to or whilst data collection.

With the two policies π1 and π2, we have run the pipelines for the whole task. The major difference is
the number of episodes required for the training with the same threshold of returns. This experiment
is been carried out 10 times with different random policies for π2. The difference in the number of
episodes is 53± 7, which is much less compared to the total number of episodes to train. Hence, we
simply used a random policy for tasks in 4.1 and an expert policy for 4.3. The evaluation metrics
of the final checkpoints from both approaches are present in Table. 4, which shows no marginal
improvement.

Table 4: Performance comparison between Our Approach with π1 and π2 on the public CARLA
leaderboard CARLA Team (2020). All three metrics are higher the better.

Method Driving Score Route Completion Infraction Score

Our Approach with π1 74.23 91.21 0.88
Our Approach with π2 74.12 91.23 0.88

15

Published as a conference paper at ICLR 2024

A.8.2 MODULARITY WITH πoptimal

For the approach to be modular, we would require the learnt CBF to work as a safety guarantee for
any policy other than the one it is trained with. For the same, we experiment with two policies: 1)
Jointly trained policy and 2) Policy independently trained for the same task. Hence, we compare the
results of the two policies with the learnt CBF acting only when the action signal is to be modified.
For the experiments, we describe the pipeline setting as below.

• Jointly learnt policy π3: This is exactly the approach we use for our experiments in 4.3,
a brief detail of the setup is an Expert policy was used as πadapt for training dynamics
function, barrier function and the encoder, Later a random policy was trained through the
proposed pipeline.

• Independently learnt policy π4: As the approach above utilizes the same network ar-
chitecture and policy from Interfuser Shao et al. (2022), it would be fair to train a policy
from Interfuser without our pipeline elements and post-training integrate the policy into
our pipeline. To do so, we utilize a separate trained encoder, dynamics model and barrier
function for the same task, where the barrier function only modifies the action signal when
it exits the safe set or enters the unsafe set.

With the above setting, The performance of π3 with latent CBF pipeline, π4 with latent CBF pipeline
and π4 without latent CBF pipeline are present in Table. 5. We see that using Latent CBF with
any policy gives results on par or better and does not cause degradation of performance and hence
supports the argument of modularity of the pipeline.

Table 5: Performance comparison between π3, π4 with and without our CBF for safety on the public
CARLA leaderboard CARLA Team (2020). All three metrics are higher the better.

Method Driving Score Route Completion Infraction Score

Jointly learnt policy π3 with
LatentCBF

74.23 91.21 0.88

Independently learnt policy π4 with
LatentCBF

76.18 88.23 0.84

Independently learnt policy π4 without
LatentCBF

75.33 90.26 0.87

16

	INTRODUCTION
	RELATED WORKS
	Latent Control barrier Function
	Preliminary
	Overview
	Learning Lipschitz AutoEncoder
	Learning System Dynamics
	Learning Barrier Network
	Policy Training

	Experiments
	Comparison to state of the art Neural CBF approaches
	Lipschitz network for synthesis of barrier function
	Framework Modularity Assessment

	CONCLUSIONS
	Appendix
	Experimentation setup for Neural CBFs
	Non Negative Matrix Factorization for Visualing Latent Space
	Mathematical Foundation
	Objective Function
	Dimensionality Reduction

	Experimental setup for Car Trajectory Tracking
	Experimental setup for 3D Quadrotor without Obstacle
	Experimental setup for 2D Quadrotor with Obstacles
	Experimental setup for 3D Quadrotor with Obstacles
	Training Plots
	Ablation study of different policies and CBF
	Influence of adapt
	Modularity with optimal

