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Abstract— Until now, planetary exploration has been accom-
plished with wheeled vehicles, which makes movement in highly
complex, sandy, and sloping terrain incredibly tough. On the
other hand, legged robots have come a long way in the last
decade and have reached a stage of development where practical
applications appear to be possible. Legged robots can overcome
the difficulties wheeled vehicles face when exploring harsh
environments like impact craters to collect critical scientific
data. As a result, there is a need to develop simple, stable
walking controllers given the limited power resources and
reserve maximum onboard compute for scientific equipment
while exploring such regions. This work proposes a walking
controller for legged robots that is computationally efficient
at runtime for traversing planetary terrains. We realize this
walking controller on our quadruped Stochlite, using learned
linear feedback policies that modulate the end-foot trajectories.
The proposed walking controller can traverse on various
planetary terrains such as flat, sloped, rugged, loose, and lower-
than-Earth gravity conditions in simulation environments. Our
controller outperforms the baseline open-loop controller on
such planetary terrains by reducing the slippage and increasing
the stability. In addition, we have also provided preliminary
hardware testing results of our controller.

Keywords: Quadrupedal walking, Reinforcement Learn-

ing, Random Search, Planetary Terrains

I. INTRODUCTION

Future robotic exploration missions into our solar sys-
tem will face more challenging terrain. Extreme habitats
in breakouts and exposed bedrock, such as those seen in
craters or along cliffs, provide information about the planet’s
geological history. Researchers are interested in researching
this wide range of geological locations that are extremely
difficult or impossible to reach with standard wheel vehi-
cles because of the highly distributed surface, steepness, or
unpredictability in terrain characteristics. Extreme habitats
in breakouts and exposed bedrock, such as those seen in
craters or along cliffs, provide information about the planet’s
geological history. Simply put, the greater the variety of the
environment, the greater the scientific potential.

Because of the unpredictability of the encountered soil and
the requirement to traverse mountainous terrain, a wheeled
vehicle may be the limiting factor in such a mission. Mobile
robotic exploration of the Moon and Mars has previously
relied only on wheeled locomotion. Such systems provide
exceptional stability and robustness on flat terrain, but their
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operating range is limited [1]. However, these wheeled
vehicles hit their limits in unstructured areas with high, sandy
slopes and rough terrain patches [2]. Dynamic legged robots
have been demonstrated to walk efficiently on challenging
terrains [3]. The maturity of the technology has allowed the
robots to transition from the lab to real-world applications
[4].

Classical works such as the spring-loaded inverted pen-
dulum (SLIP) with Raibert’s heuristic controller [5] and
the Zero Moment Point (ZMP) [6] approach have been
used to generate robust walking behaviors. Convex Model
Predictive Control (MPC) [7] approach has shown dynamic
motion behaviors using only the centroidal dynamics model.
Nevertheless, these optimization-based methods suffer from
the drawback of requiring heavy onboard compute resources
and relying on knowing the system’s dynamics model.

Concurrently, techniques for walking robots based on
Reinforcement Learning (RL) have gained prominence. RL
combined with the centroidal dynamics model of quadruped
has been shown to solve stepping-stone locomotion, two-
legged in-place balance, and balance beam locomotion with
a good sim-to-real transfer [8]. There have also been ap-
proaches that use Deep RL policies to parameterize end-
effector foot trajectories which have shown excellent results
in the real world [9].

These current State of the Art controllers prove that legged
robots have immense potential in real-world applications.
Robots like ATHLETE [10], Scorpian [11], SpaceClimber
[12], and SpaceBok [13] have been explicitly developed
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for planetary exploration. ATHLETE, Scorpian, and Space-
Climber offer good stability while traversing rough terrain
but have limitations on hardware that acts as a bottleneck for
traversability speed and agility. SpaceBok, on the other hand,
offers excellent dynamic maneuvers, which have been shown
to work in low gravity conditions [14] and sandy terrains
[15]. However, considering the limited resources available for
space exploration missions, having computationally efficient
and robust controllers is critical, as most of the compute
should be accessible to the scientific equipment. Linear
feedback policies have shown promising alternatives to the
classical model-based, and Deep RL approaches [16], [17].
These linear policy-based approaches allow one to realize an
efficient and robust controller for walking robots.

Motivated by these findings, we propose a control frame-
work consisting of linear feedback policies to generate walk-
ing trajectories on flat, sloped, rough, loose (soiled/sandy),
and lower-than-Earth gravity environments such as Mars
and Moon. The following points can summarize our main
contributions in this work:

o Learning linear policies to control a highly non-linear
system such as a quadruped in various planetary terrains
and gravity conditions.

o Large scale approximate terramechanics subroutine for
quadruped robots in simulation.

o Preliminary hardware testing to showcase the capabili-
ties of our controller.

Our approach significantly differs from [14] and [15] as
we neither use Deep Neural Network (DNN) policy nor
optimization-based control methods. This allows us to have
a computationally efficient and interpretable controller. To
the best of our knowledge, there is no large-scale real-time
solution for terramechanics simulation which can be readily
integrated with learning algorithm pipelines. As a result,
we utilized Nvidia’s IsaacGym [18] in conjunction with a
Bekker model’s subroutine [19] to mimic sand-soil contact
interactions. It is worth mentioning that we did not attempt
to focus on sinkage but rather on slippage analysis. Finally,
we also demonstrate a hardware transfer of our controller,
showing an improvement over open-loop controllers in terms
of sheer robustness.

The following is how the paper is organized: Section II
will go through the robot model, notations, and hardware
specifications. Section III describes the linear policy, the
walking controller, and terramechanics subroutine details.
Section IV describes the training and evaluation methods
used. Section V showcases a summary of the simulation
results, assessments, comparison with the baseline open-loop
controller, and preliminary hardware tests. Finally, Section
VI is the conclusion of this work.

II. ROBOT DESCRIPTION

This section will briefly explain the robot used to showcase
the proposed methodology and the accompanying actuator-
sensor, terrain orientation estimation, and kinematics frame-
work we intend to employ for locomotion.
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Fig. 2: Figure showing Stochlite’s kinematic description
where dashed curve shows the ideal end-foot trajectory
generated by the open-loop controller, and bold curve in pink
shows the modulation of the ideal trajectory by the linear

policy

Stochlite, as shown in Fig. 2, is a custom-built low-
cost quadruped robot developed for rapid prototyping of
learning-based controllers. The symbols FL, FR, BL, BR,
represent the front-left, front-right, back-left, and back-
right legs respectively. Also, Oyorna and Ocom represents
world and Centre of Mass (COM) frames respectively. For
simplicity, only the FR hip frame, Oy;p pr is shown. It is
worth noting that, unlike SpaceBok [13], the quadruped is
not explicitly built for planetary exploration applications,
as in this work, we want to focus on building the model-
free control framework that is easily transferable to any
quadruped system.

1) Actuation: Overall, the robot model consists of 6
floating and 12 Degrees of Freedom (DoF). The 12 DoF
are actuated using B3M Smart Servo motors. The motors
can measure joint angles (hip and knee) and torques via
joint encoders and motor current sensors. The Stall torque
provided by the motors is in the range of 4.1 Nm

2) Onboard Computation: We use a Raspberry PI 3b
microcomputer for running all the high-level controllers. It
consists of 2 GB RAM and includes four high-performance
ARM Cortex-A53 processing cores running at 1.2 GHz.
An STM32 microcontroller board is also used for low-level
communication between a Raspberry Pi and the servo motors
using Serial Peripheral Interface (SPI) communication.

3) Sensors: Accurate feedback is necessary for any con-
troller to drive the system to the desired state. For this, we
use an Xsens MTi-610 Inertial Measurement Unit (IMU),
which provides calibrated data on the 3D orientation, angular
velocities, acceleration, and magnetic field.

4) Local Terrain Slope Estimation: We require the local
terrain slope as feedback to the controller. Hence we use a
similar technique as [16] to estimate it with the help of joint
encoders in the motors and six Time of Flight (ToF) sensors
placed in a hexagonal configuration below the torso as shown



in Fig. 2. Note ToF sensors are only used to estimate the
readings on hardware as the current version of IsaacGym
does not support range sensors. This ToF sensor placement
is required as currently, we lack any foot force sensing
capabilities for contact detection and thus are planned for
the future versions of the robot.

5) Kinematics: We treat each leg independently to derive
analytical relations for forward and inverse kinematics. Here
q1, g2, and g3 represent abduction, hip, and knee joints and
form a serial-3R kinematic chain as shown in Fig. 2. This
reduces the runtime overhead present in the iterative solvers,
as it is one of the critical components that help us map end-
foot trajectories to joint space.

III. METHODOLOGY

This section provides an overview of the control architec-
ture, i.e., how end-foot trajectories are generated and tracked
in real-time to walk in various environments. This structure
is also depicted graphically in Fig. 1.

A. Reinforcement Learning

The locomotion of quadruped in this work is treated as
an RL problem. We parameterize our RL policy with end-
foot trajectories with sinusoidal height variation to accelerate
training. Our method is similar to [16], [17], which uses a
feedback mechanism to dynamically alter these trajectories
based on body and local terrain slope. At a high level, the RL
policy infers the parameters of the walking trajectories and,
therefore, robot motion. We limit our policy to being linear,
as it then requires low computation, allowing our policy
to be executed on an onboard embedded system in real-
time. Section IV contains further information on the training
algorithm used to learn these linear policies.

1) Observation Space: The observation space, which is
the input to the policy, is in R*®*! in our formulation. It
consists of robot walking height 2z, body orientation in roll
¢, pitch 0, yaw 1), the position of foot 7; € R? for each leg
1 € {1,2,3,4} with respect to center of mass (COM), local
terrain slope in roll ¢ and pitch 6.

2) Action Space: The action space, i.e., the output of
the policy, is in R®*!, which represents the instantaneous
shifts. The shifts s; are x,y, z translational transforms for
the leg trajectories of the robot in the body frame. These
instantaneous shifts result in reactive behavior, as seen in
Fig. 2.

3) Linear Policy: We choose the policy to be m(s) :=
M(©)s, where M € R3<!® is a matrix that maps the
observations s to actions, and © represents the learnable
parameters, i.e., the policy matrix elements. To simplify
the problem, we consider M to be a sparse matrix by
accounting for the intuitive contribution of each element in
the observation space to the elements of the action space.
For example, the shift in « for the leg is only affected by the
body height, body pitch, slope pitch, and x coordinate of the
legs. So the column element for the respective terms will be
learned, with the rest always being zero. Such structures also
showcase one of the advantages of having linear feedback

policies as they are easier to analyze and impose intuitive
heuristics than DNNss.

B. Walking Controller

Walking over varied terrains such as flat, inclined, rough,
and loose brings unique problems that cannot be acquired
straight from the open-loop walking controller (our frame-
work without the linear policy feedback). As mentioned
earlier, we use the linear policy to alter the end-foot trajecto-
ries in real-time based on the observations to ensure steady
walking. The trajectory of each leg is parametrized by phase
® € [0,27]. Note that the swing phase and stance phase
will be different for each leg, as they will vary according to
different gaits. For the scope of this work, we focused on
mainly realizing two types of gait behaviors: trot and crawl.

For the swinging trajectory, the foot placement with re-
spect to the hip frame for each leg at the start of the swing
is determined using the Raibert Heuristic [5],

vcmdATst
2

where ¢ is the time step, ATy, is the stance duration, vem,q
is the linear velocity from joystick inputs, and s, ; ; are the
x,y components of the shifts predicted by the linear policy.
Once this is defined, the leg trajectories are generated as
follows for every time step:
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where ¢;; is the i-th leg phase, ATy, is the swing
duration, dt is the control time step, hg,, is the swing height,
ho is the walking height, r;, and r.,s. represent the x,y
and z components of the foot and shifts respectively.

Thus the entire leg trajectory gets modulated by the pre-
dicted action values of the linear policy. We choose to have
a decoupled structure in z,y, z for the end foot trajectory
because it allows us to take twist inputs seamlessly from the
joystick. In theory, the z component variation can consist
of any function that generates a swinging profile; however,
we used sinusoidal variation to fulfill our requirements. An
inverse kinematics function then gives the command joint
angles for each leg described earlier.

C. Terramechanics Subroutine Details

Controllers capable of walking over loose terrains made
up of soil and sand without destabilizing the quadruped
are required. Thus, policies must be explicitly trained in
such environments for seamless sim-to-real transfer. Current
physics simulators like Chrono [20] and Adams-Based Rover
Terramechanics and Mobility Simulator (ARTEMIS) [21]
lack the ability to perform real-time computations required



Fig. 3: Figure showing an interaction between soiled/sandy
terrain and a robot leg

for fast realization of learning-based controllers. A simple
alternative is to create an approximate terramechanics sub-
routine of the Bekker model [19] in an existing fast and
large scale simulator for Robot Learning such as Nvidia
IsaacGym [18]. We only focus on the shear forces acting
at the contact, which causes slippage in the total distance
traveled. To account for the effects of high sinkage is an
exciting avenue and beyond the scope of this work; hence,
it is left for future works.

1) Shear Stress at the contact: Consider the scenario
shown in Fig. 3 where the contact of the leg produces a
vertical load W, with a being the projected contact area of
cross-section AB. For simplicity, we neglect the effects due
to the curvature of the leg and treat the contact area as a flat
surface. Then the pressure P, produced at the contact surface
on the soil, is given by P = W/a. This motion creates shear
stress at the cross-section AB. The Mohr-Coulomb failure
criterion estimates the soil failure, which is given by,

Tmaz = C + P tan(¢.), 3)

where 7,42 1S the failure stress, C'is the soil cohesion, and
¢. is the angle of friction. The actual shear stress generated
is then derived as,

j=vdt, 4)
T = Tyaz (1 — e/, (5)
Fs=r1a. (6)

Here 7 is the actual shear stress generated at the contact
surface, j is the shear displacement, and G is the shear
modulus. Once 7 is calculated at the contact surface, one
can say that a shear force F§ is acting on the body. This
force then induces a slippage at contact, which means that the
actual velocity of the body is reduced as it is a reaction force.
Equations (3) to (6) are then used to apply an external force at
the next time step of the simulation. Finally, different gravity
conditions can be simulated by changing the parameters of
the physics engine solver.

IV. PoLICY TRAINING AND EVALUATION

We have used the Augmented Random Search Algorithm
[22]. The algorithm is comparable to other model-free RL al-
gorithms when searching linear deterministic policies. Given
the problem setup, the algorithm’s goal is to determine the

parameters O of the matrix M that yield the best rewards,
which leads to the best locomotion on different planetary
terrains. To exploit the parallelization capabilities of Isaac
Gym, we implemented a batched version of ARS.

A. Domain Randomization

We employ two-stage domain randomization to reduce
the sim-to-real gap and produce robust learned policies. The
first stage consists of randomizing the robot orientation and
spawning height at the start of each episode. This ensures
that the policy can recover from unstable configurations. The
second stage consists of changing the terrain of locomo-
tion using curriculum learning similar to [16]. Initially, the
curriculum consisted of easier terrains like flat ground and
lower slope values. After every m iterations of the learning
algorithm, where m is a hyper-parameter, the difficulty of
terrain is gradually increased by training on higher slope
values and rough terrains. This ensures that the policy has
seen all the different terrain types. While learning the linear
policies, we also randomly sample the soil/sand parameters
for every rollout to avoid overfitting. The properties used for
our experiment are obtained from [23].

B. Reward Function

Obtaining a good reward function is critical to reduce
the training time and ensure that the learned policy makes
optimal predictions for the walking controller. We choose
our reward function R to be,

R = Gw17u1 <||Ucmd - Ucurr”)
+ GwQ,Uz (¢ - ¢s) + G’UJ3,U3 (9 - 95) (7)
+ Guogyus ([Wz,y ) + Gus,us (Po)-

In the above equation, the function G : R — [0,1] is a
Gaussian kernel and is given by Gy, o, (z) = w; e~uwiT”,
where j € {1,2,3,4,5},w; and wu; are scalar weights.
Whereas, vcyrr and w;, are current 2D twist and current
angular velocity in z,y. The reward can be broken into
five terms, encouraging the robot to minimize the error
in commanded and current linear velocity, maximizing the
stability by aligning the body roll and pitch to the local
terrain slope, minimizing the variation in current angular
velocities, and consuming less power P,,.

We have trained our robot to walk on flat, sloping grounds
of up to 15° and rough terrains with an average undulation
of 5 cm. The robot was commanded to track a given linear
velocity in a fixed direction from emulated joystick inputs
with respect to the world frame. The hyper-parameters of
ARS used in training were: Learning rate o = 0.05, noise
0 = 0.03, Number of directions N = 20, Top-performing
directions b = 4, episode length of 500 and 600 epochs. Null
policy (zero matrices) are initialized and iteratively improved
in batches, reducing the computational time required during
rollouts.
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Fig. 4: Comparison of different gaits in different gravity
conditions for a simulation time of 15 s

V. RESULTS

This section contains the simulation results, a comparison
to the open-loop walking controller, and the hardware tests
carried out. As stated earlier, we use Nvidia Isaac Gym with
the subroutine mentioned in III-C to validate our framework.
We made a custom gym environment to train and evaluate
the linear policies.

Each policy update took on average 12 s, and thus the
total training time was about 1 h 30 min. We have learned
different policies for different gravity conditions, and the
walking controller was commanded to track a velocity of
0.5 m/s for Earth, 0.15 m/s for Mars and Moon. The
control loop frequency for the trajectory generation and
motor control was 100 Hz, and the simulation timestep was
0.01 s.

As mentioned earlier, the Bekker model subroutine in-
troduces a slip in the total distance traveled. Despite the

slip, the policy can keep the robot stable due to the shear
forces occurring at the contact foot. Tables Ia and Ib show
the average distance traveled and the slip occurring, which
should be accounted for by the high-level path planners.
As one can see, the linear policy controller outperforms the
open-loop controller. The slip is calculated according to the
relation s; = 100|(d, — dp)|/d,, where d;, and d, is the
distance travelled with and without the Bekker subroutine
respectively. It is also evident that power consumption is
higher as higher torques are required to produce the same
motion whenever the robot traverses on loose terrains.

Fig. 4 shows the comparison of the performance of various
gaits in different gravity conditions for a simulation time
of 15 s. We prefer to use trot gait in higher gravity con-
ditions to track higher velocity commands. In comparison,
gaits like crawl perform better in lower gravity conditions.
Such performance difference is because higher frequency
gaits tend to generate higher impact forces when the leg
reaches the touchdown phase. This is evident mainly due to
position control methods employed. We plan to use force
control methods in future work since it is possible to lower
the impact forces during the touchdown or develop stable
bounding behaviors irrespective of the underlying terrain
type.

We have also performed preliminary hardware experiments
on our proposed controller. Fig. 5 shows the keyframes of the
robot traversing slope of 9° along with loose terrain made of
artificial dry sand. The robot can keep itself stable when tran-
sitioning between different terrains without toppling over.

VI. CONCLUSION

This work successfully showed the development of a
linear policy-based walking controller capable of generating
robust quadrupedal motion on planetary terrains such as
in flat, sloped, rugged, loose, and low-than-Earth gravity
terrains. The end-foot trajectory modulating policy has been
demonstrated to be transferrable across all terrain transitions.
The proposed technique will provide a single framework
for rapidly constructing linear feedback control policies for
any multi-legged robot, thereby significantly simplifying
the controller design and deployment process for planetary
exploration missions.

Even though nonlinear policy parameterizations might
result in better accuracy, they will have significantly higher
computational requirements. Hence linear policies were con-
sidered in our framework as they have the smallest number
of parameters and show good performance. The simulation
results showed that our method outperforms the baseline
open-loop controller by reducing slippage and offering high
stability. We also observed that gaits like crawl become more
stable with our framework in low gravity conditions. Prelim-
inary results on our hardware platform Stochlite are shown to
validate our framework. Future work will include deploying
the robot on Lunar and Martian testbeds, performing sinkage
analysis, extending the framework to force control methods,
and studying more diverse gaits such as bounding. Video
results can be found at: https://youtu.be/La3y-xhWm1U
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