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Abstract Gait recognition in the presence of occlusion

is a challenging problem in real-life surveillance appli-

cations and the solutions proposed by researchers to

date lack robustness and also dependent on several un-

realistic constraints. We improve the state-of-the-art by

developing a Deep Learning-based framework to recon-

struct the occluded frames in a gait sequence by ex-

ploiting the spatio-temporal information present in ad-

jacent frames as well as the key pose information corre-

sponding to each frame of the sequence. Our multi-stage

pipeline consists of key pose mapping, occlusion detec-

tion, and reconstruction, and finally gait recognition

phases. While the key pose mapping and occlusion de-

tection are done using existing algorithms, we propose a

new model, namely, Bidirectional Gait Reconstruction

Network for occlusion reconstruction by stacking a Con-

ditional Variational Autoencoder with a Bi-Directional

Long Short Time Memory. The sub-networks involved

in the occlusion reconstruction model are trained using

extensive synthetically occluded datasets constructed

from the CASIA-B and OU-ISIR LP data. Experi-

mental results show that our proposed model recon-

structs occlusion effectively and generates frames that

are temporally consistent with the periodic pattern

of gait, while simultaneously preserving information

about the silhouette structure of the target subject. Fi-

nally, GEINet feature-based classification is employed
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to identify the class of the subject from the recon-

structed sequence. The effectiveness of our approach is

evaluated using the real-occluded TUM-IITKGP and

synthetically occluded CASIA-B data sets and encour-

aging results have been obtained. Comparative analysis

with other popular occlusion handling methods in gait

recognition also shows the superiority of our approach

over these techniques.

Keywords Key Poses · Occlusion Reconstruction ·
Spatio-Temporal Model · Gait Recognition

1 Introduction

Gait recognition refers to the process of identifying in-

dividuals from their walking patterns and gait is the

only biometric that can be captured quite well from
a distance without physical interaction with subjects.

Due to this reason, an effective gait recognition method

can be potentially used to identify suspects in surveil-

lance zones if the gallery gait sequences of these sus-

pects are available. An ideal gait recognition method

must be able to handle all the real-life challenges in-

cluding presence of occlusion in the scene, camera view-

point variation, clothing changes of subjects, etc. Over

the past two decades, there have been several attempts

to tackle situations where the viewpoint and co-variate

conditions of subjects are different in the training and

test sequences, e.g., [1–3]. However, significant focus has

not been given to solve the challenging problem of gait

recognition in the presence of occlusion. Only a few

methods [4–7] have shown directions to approach this

problem, but these methods are not effective enough to

handle the variations in real-life surveillance scenarios

and need further developments.

Out of the occlusion handling methods in gait recogni-

tion, the approach discussed in [4] and [7] are non-Deep
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Learning-based. While the method in [4] works by com-

paring the available walking poses in the training and

test sequences, that in [7] uses a Gaussian Process Dy-

namical Model to predict the missing/occluded frames

in a gait cycle and next extract features from this re-

constructed cycle to perform recognition. The method

in [4] fails if no matching walking poses are found in a

pair of gallery and test sequences due to heavy occlu-

sion, whereas the assumption in [7] that walking fea-

tures follow a Gaussian is not an established fact and

the fitted Gaussian may not be able to make good pre-

diction about the missing frames if the input sequence

is corrupted with moderate to heavy degrees of oc-

clusion. In contrast to these two methods, that in [5]

and [6] present CNN -based Deep Learning frameworks

to reconstruct the Gait Energy Image (GEI ) features

from incomplete cycles. However, to make reliable pre-

dictions, these models also need sufficiently good GEI

features to be provided as input, which is not possible

if the degree of occlusion is high.

In this work, we focus on improving upon the exist-

ing solutions to occlusion handling in gait recognition

and propose a new model termed as the Bi-directional

Gait Reconstruction Network (abbreviated as BGaitR-

Net) to reconstruct the occluded frames present in a

gait sequence by exploiting the spatio-temporal infor-

mation from the input sequence and the auxiliary key

pose information about the gait of human being [7]. The

proposed model is formed by stacking a Conditional

Variational Autoencoder (CVAE ) with a Bi-directional

Long Short Term Memory (Bi-LSTM ) and these sub-

networks are trained using extensive gallery sets con-

structed from the CASIA-B data [8] and the OU-ISIR

Large Population Dataset [9]. Performance evaluation

of the proposed model has been done using both the

real-occluded sequences present in the TUM-IITKGP

[10] data and the synthetically occluded sequences gen-

erated from the CASIA-B data. The results in terms of

reconstruction Dice score and gait recognition accuracy

show that our model is effective enough to reconstruct

sequences corrupted with moderate to heavy degrees

of occlusion. The main contributions of our work are

summarized as follows:

– We propose a new neural model BGaitR-Net to ef-

fectively reconstruct the occluded frames present in

a gait sequence in a temporally consistent manner

by fusing the spatio-temporal information available

from the sequence and the key pose information for

each frame of the sequence. Good quality recon-

struction results are obtained even if 60-70% frames

in a gait cycle are occluded.

– An extensive data set of synthetically occluded se-

quences along with the ground truth unoccluded

sequences constructed form the CASIA-B and the

OU-ISIR LP data form the gallery set to train

the two sub-networks of our reconstruction model

BGaitR-Net effectively, namely the CVAE and the

Bi-LSTM. Suitable loss functions have been used to

train both the sub-networks and an ablation study

has been done to observe the effect of the different

components of the proposed BGaitR-Net model.

– Comparative study shows that our method is su-

perior to other occlusion handling methods in gait

recognition both in terms of reconstruction quality

and gait recognition accuracy.

– The resources including the synthetically occluded

data and pre-trained models will be made publicly

available to the research community for further com-

parative studies.

2 Related Work

Traditional gait recognition approaches can be classi-

fied as either appearance-based or model-based. While

the appearance-based approaches extract gait features

from the silhouette shape variation over a gait cycle,

the model-based methods attempt to fit the kinemat-

ics of human motion in a pre-defined walking model.

Appearance-based approaches have become more pop-

ular over the years due to their ease of implementation

and less computational requirements and here we re-

view only the existing appearance-based approaches in

the literature. The work in [11] presents a feature called

the Gait Energy Image (GEI ) that computes the aver-

age of gait features over a complete gait cycle. Due to

aggregating features over a gait cycle, the GEI can-

not capture the dynamics of gait effectively. Later on,

a few approaches have been developed that have made
attempts to overcome the limitations of GEI. As an ex-

ample, the work in [12] introduces a pose-based feature

by aggregating features from fractional parts of a gait

cycle. This feature is termed Pose Energy Image (PEI )

and it has the potential to capture the kinematics of

gait at a higher resolution. A few similar fractional gait

cycle-based feature extraction techniques can be seen

in [13] and [4] that use the RGB, depth, and skele-

ton streams from Kinect. However, each of these cate-

gories of approaches considers dividing a gait cycle into

a fixed number of non-overlapping partitions. Another

approach towards preserving the dynamic information

of gait better than GEI is given in [14] in which a

feature termed the Active Energy Image (AEI ) is de-

scribed that computes the active walking regions by

subtracting the adjacent binary silhouette frames fol-

lowed by averaging these difference image frames.

Instead of considering a fixed number of gait cycle par-

titions, in [15] Gupta et al. propose using a dictio-

nary of key pose sets, each with a different number
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of key poses. Next, pose-based AEI features are com-

puted corresponding to each set of key poses, and the

final prediction about the class of a subject is made

based on the class with which the maximum number

of matching key poses is observed. This approach has

been seen to provide improved recognition performance

over that of the previously developed features given in

[11, 12, 14]. In [16], the GEI features are first pro-

jected into a lower-dimensional space using Marginal

Fisher Analysis, and recognition is done using the sub-

space features. A viewpoint invariant gait recognition

approach described in [1] performs cyclic gait analysis

to identify the key frames present in a walking sequence.

Standard structural features such as height, width, dif-

ferent body-part proportions, stride length, etc., have

been used for recognition via normalized correlation.

All the above-mentioned approaches require a complete

cycle of gait for proper functioning and hence, are not

suitable for gait recognition in presence of occlusion.

With the introduction of RGB-D cameras such as

Kinect, a few frontal-view gait recognition techniques

[13, 17] have also been developed. An advantage of

frontal view gait recognition is that it is less prone to

occlusion, as a result of which there is a higher chance of

capturing clean and usable gait cycle information even

from a short sequence. Since, reliable gait features can-

not be extracted from frontal view binary silhouette

sequences, depth streams provided by depth cameras

such as Kinect have been mostly utilized in research

on frontal gait recognition. The work in [18] jointly ex-

ploits body structural data and temporal information

from Kinect RGB-D streams using a spatio-temporal

neural network model termed the TGLSTM to effec-

tively learn long and short-term dependencies along

with a graph structure. Initially, a graph is constructed

from each frame containing a binary silhouette that

represents the skeleton structure of the silhouette in

the frame. Following this, an LSTM is used to capture

the variation of the skeletal joint features over consecu-

tive frames. However, the effectiveness of this method is

likely to suffer if any input silhouette frame is corrupted

by noise. Also, the use of depth sensors to capture gait

videos in surveillance sites is not recommended due to

their small depth-sensing range.

With the advancement of Deep Learning, CNN -based

models have also been extensively used for gait recogni-

tion. For example, in [19] and [20], raw sensor data from

the accelerometer and gyroscope of smartphones are

used to monitor users’ behavioral patterns. A CNN ar-

chitecture is trained using the temporal and frequency

domain data to extract an information-rich feature rep-

resentation. Next, SVM -based classification of these

features is done in the latent space to predict a per-

son as either a legitimate user or an imposter. Re-

cently, CNN s have also been used for cross-view gait

recognition, for example, the work in [21] describes

a deep Siamese architecture-based feature comparison

that works satisfactorily even for a large variation of

view angles. Among the other recent Deep Learning-

based gait recognition approaches, in [22] the GEI fea-

tures computed from a gait cycle are passed through

a CNN -based model, termed GEINet to obtain deep

features which are next used for classification. Since

training a deep network requires tuning a large num-

ber of trainable parameters, the authors in [23] suggest

employing a small-scale CNN consisting of four convo-

lutional layers (with eight features maps in each layer)

and four pooling layers for gait recognition.

CNN -based generative models have also been employed

for handling varying co-variate conditions effectively

and also for solving the challenging cross-view gait

recognition problem to translate gait features from one

view to a different view. For example, in [24], a key pose-

based gait recognition approach has been presented

that can perform recognition effectively from videos

with different co-variate conditions, such as wearing

coat, carrying bag, etc. Here, a GAN model has been

used to artificially transform the features with co-

variate conditions to that without co-variate conditions

before carrying out recognition. Additionally, in this

work, the constraints of mapping frames to the differ-

ent key poses, as used in other pose-based gait recogni-

tion approaches such as [12, 13], have been relaxed to

perform recognition effectively even if the training and

test videos have different walking speeds or are captured

at different frame rates. The work in [25] by Yu et al.

focuses on developing a view-invariant and co-variate

condition invariant gait recognition method based on

a GAN framework. Given a test sequence from any

view, this approach computes the GEI features [11],

and next uses a GAN to predict images corresponding

to normal side view walking without co-variate objects.

In addition to the standard GAN discriminator, the

authors make use of an additional identification dis-

criminator to ensure that the identity features are not

lost during the view transformation process. However,

this approach requires conversion of the input GEI fea-

tures computed from any view to the corresponding

side-view GEI features, which is expected to be time-

consuming. In another similar work, namely [2], a new

architecture termed the Multi-Task GAN (MGAN ) has

been introduced by He et al. that learns view-specific

feature representations for transforming the gait tem-

plates across two different views. Here, the authors also

present a new feature termed the Period Energy Im-

age that preserves the temporal characteristics of gait
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better than the primitive GEI feature. However, this

approach can learn the mapping between two differ-

ent views only. Hence, if gait templates are available

from different viewpoints, multiple such models must be

trained which would make the model quite heavy. As an

improvement, in [3], Zhang et al. come up with a new ar-

chitecture termed the View Transformation GAN (VT-

GAN ) that can carry out similar view transformations

across any pair of arbitrary views. Specifically, gait fea-

tures in the target view are synthetically generated by

conditioning on the input image from any given view-

point and its target view indicator. An auxiliary view

classifier is considered along with the standard genera-

tor and discriminator of the GAN to control the con-

sistency of the generated templates. Additionally, an

identity distilling module with triplet loss is appended

to the GAN to yield the discriminative feature embed-

ding by retaining the identity traits.

Both the versions of the GaitSet model described in

[26, 27] extract useful spatio-temporal information from

an input sequence and integrate this information for

view transformation. An improvement over the GaitSet

model is given in [28] that introduces a model termed

GaitPart consisting of a frame-level part feature ex-

tractor that encodes the micro-motions at the different

body parts followed by a temporal feature aggregator.

An attempt has also been made to distill the GaitSet

model and come up with an effective but lightweight

student CNN model using a joint knowledge distillation

algorithm in [29]. However, none of these approaches

are suitable for application if occlusion is present in

the gait sequences. In [30], another view-invariant gait

recognition approach is presented in which separable

features are learned in the Cosine space through an an-

gular softmax loss function, and simultaneously a sec-

ond triplet loss function is employed to increase the

separation margin among the feature vectors from dif-

ferent subjects. Finally, these two loss terms are opti-

mized through batch-normalization.

Most of the gait recognition scenarios used in the above-

mentioned techniques consider a single person to be

present in the field of view of a camera, and also as-

sume that at a complete gait cycle of each individual

is available. However, the presence of occlusion makes

the silhouettes in the video frames noisy and hinders the

capturing of a complete clean gait cycle. This affects the

recognition accuracy of most traditional appearance-

based approaches discussed before. Some popular ap-

proaches towards handling the problem of occlusion in

gait recognition are discussed next. Occlusion recon-

struction has been done using a Gaussian process dy-

namic model in [7]. In this work, occluded frames in

a gait sequence are first detected and next these oc-

cluded frames are reconstructed from the unoccluded

frames by fitting the Gaussian model to the available

set of points with the assumption that the variation of

gait features over a cycle can be approximated by a

Gaussian. The viability of this approach has been eval-

uated using the TUM-IITKGP data [10]. In [31], an

approach based on SVM -based regression is employed

to reconstruct the occluded data. This reconstructed

data is first projected onto the PCA subspace and next

the projected features are classified to the appropriate

class in this canonical subspace. Three different tech-

niques for the reconstruction of missing frames have

been discussed in [32], out of which the first approach

uses an interpolation of polynomials, the second one

uses auto-regressive prediction, and the last one uses a

method involving projection onto a convex set.

From the literature review, we observe that gait recog-

nition in the presence of occlusion is still an emerg-

ing area of research with possibilities for significant fu-

ture development. Moreover, the effectiveness of Deep

Neural Network-based models to predict the miss-

ing/occluded frames in a gait sequence has not been

studied yet. In this work, we specifically focus on this

aspect and propose a new spatio-temporal model to re-

construct the occluded frames in a gait sequence. The

proposed network architecture along with the training

details are explained in the following section.

3 Proposed approach

A schematic diagram explaining the steps of the

proposed occlusion reconstruction approach through

BGaitR-Net is shown in Fig. 1. With reference to the

Fig. 1: A block diagram showing the pipeline of the proposed
reconstruction algorithm

figure, standard pre-processing steps [11, 14, 22] are

first applied to extract the binary silhouettes from the

RGB frames and normalize these extracted frames. This

step involves background subtraction using a suitable

technique, cropping out the region of interest, and re-

sizing each cropped region to a fixed height and width.

These preprocessed silhouettes are next used to esti-
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mate a set of key poses using a technique similar to that

described in [12]. Next, given a test silhouette sequence,

we carry out similar preprocessing steps to generate the

normalized silhouettes, and use a VGG-16 model [33] to

predict the occluded frames followed by a graph sorting

algorithm to map the unoccluded PCA-reduced frames

to the appropriate key poses [7]. Finally, a sequence

of preprocessed frames (which may be either occluded

or un-occluded) are fed to the proposed BGaitR-Net

occlusion reconstruction model along with a auxiliary

conditional key pose vector corresponding to each frame

to obtain a refined prediction about the input frames.

It may be noted that, we have used existing algorithms

for the background subtraction, VGG-16 -based occlu-

sion detection, key pose construction, and frame map-

ping to key poses. Hence, instead of elaborately dis-

cussing these algorithms, we provide an overview of the

related approaches used in this work with proper ci-

tations. A more focus is given to explaining the steps

of our proposed occlusion reconstruction algorithm in-

cluding the architectural details and training of the in-

dividual sub-networks of the BGaitR-Net model.

3.1 Occlusion Reconstruction in a Gait Sequence

Given an occluded test sequence, standard pre-

processing steps such as silhouette cropping and nor-

malization as in [11, 14, 22] are employed to obtain

clean and normalized binary silhouettes corresponding

to each frame. Six frames from a sample occluded bi-

nary silhouette sequence along with the corresponding

normalized frames are shown in the first and second

rows of Fig. 2. While for unoccluded frames (i.e., the

first and sixth frames) clean binary silhouette frames

are obtained, for occluded frames (i.e., second to fifth
frames) the silhouette shapes obtained are quite irreg-

ular and do not resemble human structure as can be

observed from Fig. 2.

Fig. 2: The first row shows background-subtracted frames and
the second row shows cropped and normalized binary silhou-
ettes corresponding to a few occluded and unoccluded frames
in a sequence from the TUM-IITKGP data [10]

A VGG-16 model [33] is used to automatically iden-

tify the occluded and the unoccluded binary silhou-

ette frames present in any normalized binary silhou-

ette sequence. This model takes as input a normalized

binary frame and classifies it as either ‘Occluded ’ or

‘Unoccluded ’. This model is quite effective for occlusion

detection and performs with a precision and recall of

99.53% and 98.72%, respectively and an overall accu-

racy of 98.89% on validation data.

3.1.1 Determination of Key Poses in a Gait Cycle and

Mapping of Frames to the Appropriate Key Poses

Next, we determine a set of generic key poses in a gait

cycle using an algorithm similar to that given [12] and

map the unoccluded frames in each sequence (as pre-

dicted by the VGG-16 model) to the appropriate key

poses. A set of 50 different gait cycles extracted from

the CASIA-B [8] and OU-ISIR Large Population (LP)

[9] datasets have been used to compute these key poses.

Similar to the work in [12], we apply constrained K -

Means clustering with K=16 on these 50 gait cycles to

determine the key poses and these are shown in Fig.

3. As can be seen from the figure, the set of key poses

Fig. 3: 16 Key poses computed from a set of gait cycles from
CASIA-B data and OU-ISIR Large Population data

preserves the temporal order of general human walk-

ing, and are not specific to any individual person. Once

the generic key poses are identified, the appropriate

key poses numbers for each unoccluded frame in the

sequence are obtained following a frame to key pose

mapping algorithm similar to that given in [7]. This al-

gorithm classifies each unoccluded frame of an input se-

quence to the appropriate key pose by maintaining the

temporal order of walking and also constraining the un-

occluded frames to not get mapped into any key pose.

Fig. 4 shows a binary silhouette sequence of 27 frames

with both partial and full-body occlusions generated

from the CASIA-B data, and the corresponding state

to which each frame gets mapped to. In this figure, the

symbol Si (for i = 1, 2, ..., 16) indicates that the cor-

responding frame has got mapped to the ith key pose,

and S0 indicates that the frame is occluded. As can be

seen from the figure, the occluded frames are correctly

detected by the VGG-16 model, and the key pose num-

bers assigned to the frames tallies with the sequence of

key poses shown in Fig. 3. A detailed discussion on the

key pose construction and frame to key pose mapping

algorithms can be found in [7, 12].
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Fig. 4: An occluded frame sequence and the mapped states
corresponding to each frame

Fig. 5: An overview of the BGaitR-Net Model used for occlu-
sion reconstruction

3.1.2 Architecture and Training Details of BGaitR-Net

Next, we describe in detail the architecture of BGaitR-

Net along with the loss functions used to train the in-

dividual sub-networks present in the model. As shown

in Fig. 5, the BGaitR-Net consists of an Encoder-

Decoder architecture with a Bidirectional Long-Short

Term Memory sub-network in between. Initially, an

encoded vector Ei corresponding to each frame Fi is

computed using a Conditional Variational Autoencoder

that takes as input the normalized frame and a vector

c obtained from one-hot encoding of the correspond-

ing key pose number. This vector is 17-dimensional out

of which the first 16 attributes correspond to the 16

key poses, and the final attribute indicates whether the

frame is ‘Occluded ’ or not. Specifically, if the frame is

occluded, this last attribute is assigned as 1 and all

other attributes are assigned 0. Otherwise, 1 is as-

signed to the attribute corresponding to the mapped

key pose, whereas all other attributes are assigned 0. Six

encoded vectors denoted by E1, E2, ...,E6 correspond-

ing to six frames of an input sequence, namely, F1, F2,

...,F6, are input to a Bi-LSTM network that predicts

the reconstructed vectors denoted by Ê1, Ê2, ...,Ê6 for

each of these six input frames. Since a binary silhou-

ette sequence corresponding to human walking can be

viewed as a spatio-temporal pattern in which silhouette

images form a periodic progression, the binary silhou-

ette frame at a particular instant of time can be said

to be temporally related with its neighboring frames

in the sequence. Hence, the silhouette information cor-

responding to any occluded frame can be predicted by

exploiting the spatio-temporal information contained in

the neighboring frames. These reconstructed vectors are

next passed through a Decoder network to obtain the

reconstructed frames, namely, F̂1, F̂2, ...,F̂6. Training

of the BGaitR-Net is done by training the two sub-

networks, namely, the Autoencoder (i.e., the Encoder-

Decoder architecture) and the Bi-LSTM separately on

extensive data sets. In our work, an Encoder-Decoder

architecture is trained to obtain the encoded represen-

tation for each image frame and convert the vector back

to the image. However, for ease of explanation, in Fig.

5, six different encoders and decoders have been shown,

one for each image frame. During testing, occlusion re-

construction is done by following a three-step process,

shown in the figure. First, vector embedding of six con-

secutive frames are computed by the Encoder, and next

each of the frames is reconstructed via the Bi-LSTM in

the encoded space. Finally, these reconstructed vectors

are decoded back to the image space using the Decoder.

We next discuss the architecture and training details

for each of the two sub-networks, namely, the Encoder-

Decoder and the Bi-LSTM.

Encoder-Decoder Architecture: A Conditional Varia-

tional Autoencoder (CVAE ) has been employed in this

work to compute an embedding for each binary silhou-

ette frame present in a sequence. This encoded vector

has a reduced dimension compared to the original im-

age and preserves the important characteristics of the

silhouette shape at each frame while simultaneously re-

ducing the noise and other redundant information. A

detailed architecture of the Encoder network used in

the CVAE is shown in Fig. 6. The figure shows rectan-

gular blocks representing the sequence of mathematical

operations that are carried out within the Encoder net-

work along with the dimensions of the features that are

output from each block.

With reference to the figure, the Encoder network fuses

information from a binary silhouette frame (F ) of di-

mensions 160×160 and its corresponding one-hot en-

coded key pose vector (c) to generate an encoded vector

(Z) corresponding to the silhouette frame. The input

binary image F is passed through three convolutional

layers, each followed by a batch normalization oper-

ation to obtain feature maps of dimensions 4×4×64.

This is next flattened into a 1024-dimensional vector

and passed through a dense layer to obtain a 336-

dimensional encoded representation of the input image.

On the other hand, the one-hot encoded vector c com-

prising of the key pose-related information is also com-
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Fig. 6: Architecture of the Encoder of the Conditional Vari-

ational Autoencoder used for computing an embedding from
each binary frame

pressed through two dense layers into a 4-dimensional

vector c′. These two vectors obtained from the binary

image and key pose encoding are next concatenated and

further passed through another dense layer to obtain a
32-dimensional feature vector. This feature vector pre-

serves information about the input frame F as well as

the key pose to which it is mapped.

The CVAE learns to minimize the difference between

the original distribution of the data from a standard

normal distribution. If the function learned by the En-

coder is denoted by E, then E takes as input both F

and c and outputs the parameters of the fitted normal

distribution, namely, the mean vector (µ) and the log-

arithm of the variance (log(σ2)). Mathematically,

[µ, log(σ2)] = E(F, c). (1)

Training of the CVAE is accomplished using the

back-propagation algorithm by following a re-

parameterization strategy [34]. Both the µ and log(σ)

vectors are also 12-dimensional, and these are com-

bined with a random error term (ϵ) sampled from a

standard normal distribution to generate the output

embedded vector Z using the following expression:

Z = µ+ σ ⊙ ϵ, (2)

where ⊙ denotes the Hadamard product. Essentially, Z

is a sample drawn from the estimated normal distribu-

tion with parameters µ and log(σ), as discussed above,

i.e., Z ∼ N (µ, σ).

The architecture of the Decoder network of the CVAE

is shown in Fig. 7. As shown in the figure, this net-

Fig. 7: Architecture of the Decoder of the Conditional Vari-
ational Autoencoder used for reconstructing an image from
LSTM -predicted vector and conditional key pose vector

work is a fully connected convolutional network that

takes as input a concatenation of a 12-dimensional vec-

tor Z and the reduced 4-dimensional key pose condi-

tional vector c′ (computed during the encoding phase)

and outputs the fully reconstructed image of dimensions

160×160. During training, the Encoder and the Decoder

are trained together by stacking these networks in an

end-to-end manner, and hence Z is the 12-dimensional

latent vector sampled from the learned normal distri-

bution. On the other hand, during testing Z is the 12-

dimensional vector output by the LSTM. The concate-

nated vector [Z c′] is next uncompressed by passing it

through three consecutive dense layers with 32, 336, and

1024 neurons to obtain a feature vector of dimension

1024. This resulting vector is reshaped into a 4×4×64

dimensional feature map, which is further decoded us-

ing three transposed convolutional layers (shown in the

figure as Conv2DTranspose) with dropout to obtain

a 160×160×8 dimensional feature map. These feature
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maps are next combined into a 160×160 dimensional

feature map in the final convolutional layer, which is

also the desired output reconstructed image. The De-

coder thus learns to generate the reconstructed frame

F̂ using information from the vectors Z and c′. Since c′

is only a reduced form of the conditional key pose vec-

tor c, if the function learned by the Decoder network is

denoted by D, then F̂ can be represented as:

F̂ = D(z, c) . (3)

The complete Encoder-Decoder architecture has been

trained using two loss functions: the reconstruction loss

and the Kullback-Leibler (KL) divergence loss. The re-

construction loss (Lrec), as shown in Eqn. (4), is defined

as the binary cross-entropy loss between the input and

the reconstructed silhouettes. Mathematically,

Lrec=
−1

WH

W∑
i=0

H∑
j=0

[
Fi,j log(F̂i,j)+(1−Fi,j)log(1−F̂i,j)

]
, (4)

where W and H are the width and height of the input

silhouette, Fi,j denotes the intensity of the (i, j)th pixel

of the input frame F , and F̂i,j denotes the intensity

of the (i, j)th pixel of the Decoder-predicted frame F̂ .

The KL divergence loss (Lkl) for the normal probability

distribution of the latent vector of the image is given

by (5):

Lkl = µ2 + σ2 − log(σ2)− 1. (5)

Incorporation of Lkl ensures compact and meaningful

encoding of the images into the latent vector. Suppose,

in total, M images are used in a batch while training

the CVAE, while Lk
rec and Lk

kl respectively denote the

reconstruction loss and the KL divergence loss com-

puted for the kth image, k = 1, 2, ..., M. The com-

plete loss function (Lcvae) for training the CVAE is

the weighted summation of the two losses Lrec and Lkl

computed over all the M images and is given by (6).

Lcvae =

M∑
k=1

(
λ1L

k
rec + λ2L

k
kl

)
. (6)

In the above equation, λ1 and λ2 are the two user-

defined constant parameters. In our experiments, the

values for λ1 and λ2 are set to 1 and 0.5, respectively.

LSTM-based Sequence Reconstruction: A deep time-

series-to-time-series neural network, specifically a Bi-

directional Long-Short Term Memory (Bi-LSTM ) net-

work [35] is next employed to reconstruct the frames

of an occluded gait sequence in the encoded space.

Since the gait of any person follows a temporal pro-

gression, and Bi-LSTMs are popularly used for time-

series data filtering [36, 37], it appears that the em-

bedding corresponding to the six binary image frames

output by the Encoder network can be effectively fil-

tered using the Bi-LSTM and these filtered vectors will

preserve/reconstruct information relevant to the silhou-

ette shape in the encoded space by eliminating the un-

wanted noise, occlusion, etc. Reconstruction of the fil-

tered embedded vector through the Decoder network

will provide us with the desired reconstructed image. A

schematic diagram of the Bi-LSTM architecture used

in this work is shown in Figure 8. As shown in the

Fig. 8: Architecture of the Bi-LSTM model used for recon-
struction

figure, this network consists of three bidirectional time-

distributed layers and one time-distributed LSTM net-

work. It accepts a set Z = { z1, z2, z3, z4, z5, z6 } of six

latent vectors from the Encoder as input and returns a

set Ẑ = { ẑ1, ẑ2, ẑ3, ẑ4, ẑ5, ẑ6 } of six corresponding

reconstructed latent vectors as output. If the function

learned by the Bi-LSTM is denoted by as T , then

Ẑ = T (Zocc) . (7)

The model is trained using Mean Squared Error loss

Lmse between the original latent vectors zis and the

predicted latent vectors ẑi, as given by (8) using an ex-

tensive gallery set constructed from synthetic occluded

sequences of six frames and the corresponding ground-

truth sequences.

Lmse =
1

n

n∑ 6∑
i=1

(zi − ẑi)
2 . (8)

3.2 GEINet-based Gait Recognition

For carrying out human identification from their gait

signatures, first, we need to construct the database of

training gait features. For this, we consider the unoc-

cluded gallery sequences of pre-processed and normal-

ized silhouettes for gait recognition, extract a complete

cycle, and compute the GEI features [11] from the ex-

tracted gait cycle. Since a gait sequence typically con-

sists of multiple gait cycles, multiple GEI features can
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be constructed from a single sequence. Suppose, the

dataset consists of N subjects denoted by S1, S2, ..

SN , and GCi number of gait cycles are obtained for

subject i, i= 1,2, ..., N . Further, let the GEI feature

for the jth gait cycle of person i is denoted by F j
i , j,

i= 1,2, ..., GCi. The database of training gait features

and corresponding labels is next constructed from the

above features. IfD denotes this training database, then

D consists of the following labeled patterns:

Features: {{F1
1 F2

1 ... FGC1
1 }, {F1

2 F2
2 ... FGC2

2 }, ..., {F1
N F2

N
... FGCN

N }}
Labels: {{S1 S1 ... S1}, {S2 S2 ... S2}, ..., {SN SN ... SN }}.

The gallery set D is next used to train a GEINet model

[22], and the same architecture of the GEINet as in [22]

has also been used in this work. Specifically, this model

has two convolutional layers with 18 and 45 kernels

with max-pooling and ReLU activation at each layer,

and a softmax classification layer. It is trained with

Multi-Class-Cross-Entropy loss with Adam optimizer

till convergence.

Given a test binary silhouette sequence with occluded

frames, we first carry out the VGG-16-based occlusion

detection, followed by determination of the key pose

number for each unoccluded frame of the sequence (as

explained in Section 3.1.1). The key pose number for

each frame of the sequence is next converted into a

one-hot encoded vector and fed to the trained Encoder

network along with the corresponding binary frame to

obtain the desired frame embedding (refer to Section

3.1.2). Each set of embedding vectors from six consecu-

tive frames of a sequence is passed through the trained

Bi-LSTM that outputs six corresponding refined en-

coded vectors. Finally, each of these vectors is passed

one-by-one through the trained Decoder network to ob-

tain the corresponding reconstructed image. Once the

frames of a complete gait cycle of the test subject are

reconstructed following the above procedure, the GEI

features are computed and passed through the trained

GEINet (refer to Section 3.2) to identify the class of

the test subject. The above discussion assumes that the

gallery sequences for gait recognition are unoccluded.

In case the gallery sequences are occluded, a similar

BGaitR-Net-based occlusion reconstruction procedure

must be followed to reconstruct these sequences as well

before training the GEINet model.

4 Experimental Setup

The proposed algorithm has been trained on a system

with 192 GB of RAM and 16 Xeon(R) CPU E5-2609

@ 1.7 GHz and 7 GeForce GTX 1080 Ti with 11 GB

RAM, 11 GB frame-buffer memory and 256 MB of

BAR1 memory, and one Titan XP with 12 GB RAM,

12 GB frame-buffer memory and 256 MB BAR1 mem-

ory. Testing of the algorithm has been done on a system

with 16 GB RAM and a Ryzen 5 3550H at 2.1GHz and

GeForce GTX 1650 Ti with 4 GB RAM, 4 GB frame-

buffer memory, and 128 MB BAR1 memory.

4.1 Description of the Data Sets Used in the Study

Three different gait data sets have been used in the

study for training the BGaitR-Net or the GEINet,

namely the CASIA-B [8], the TUM-IITKGP [10], and

the OU-ISIR Large Population (LP) Data [9]. Among

these, both the CASIA-B and OU-ISIR LP data con-

sist of unoccluded sequences only, whereas the TUM-

IITKGP data consists of both unoccluded and stati-

cally/ dynamically occluded sequences. These data sets

are briefly explained next.

The CASIA-B [8] data consists of walking sequences of

124 subjects under three different settings: (a) six se-

quences with normal walking (nm-01 to nm-06), (b) two

sequences with carrying bag (bg-01 and bg-02), (c) two

sequences with wearing a coat (cl-01 and cl-02). For

conducting the experiments in the present study, we

use only the normal walking sequences (i.e., sequences

nm-01 to nm-06). Out of these, we use the sequences

labeled nm-01, nm-02, nm-03, and nm-04 for training

the GEINet model, and use the remaining two for test-

ing after corrupting the frames in these sequences with

varying levels of synthetic occlusion. On the other hand,

the OU-ISIR LP data set [9] consists of binary silhou-

ette sequences of over 3000 subjects and sequences from

this data along with those from the CASIA-B data

have been used to train the sub-networks of the pro-

posed BGaitR-Net after corrupting these with varying

levels of synthetic occlusion. Based on the chosen de-

gree of occlusion, we decide the number frames in a bi-

nary silhouette sequence to be occluded and randomly

select these number of frames from the sequence for

synthetic occlusion. Varying amounts of black patches

are introduced on the foreground pixels of each frame

that have been marked for synthetic occlusion to ar-

tificially generate partial/full occlusion in the frames.

Next, each occluded and unoccluded frame of the se-

quence is preprocessed and normalized using standard

techniques [11, 14, 22] before carrying out the recon-

struction steps given by the block diagram of Fig. 1.

The TUM-IITKGP data [10] consists of walking videos

of 35 subjects under varying conditions and for this data

also, we use the normal walking sequences to train and

the statically and dynamically occluded sequences to

evaluate the performance of the proposed reconstruc-

tion and recognition models. The normal walking se-

quences present in the TUM-IITKGP data set consist

of a large number of frames from which we segment out

eight different gait cycles corresponding to each of the
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35 subjects to form the gallery set for training the gait

recognition model. Similarly, we segment out four se-

quences from each of the static and dynamic occluded

videos corresponding to each subject to construct eight

separate occluded test sets for evaluating the proposed

gait recognition framework and also for making a com-

parative study with other approaches. These eight oc-

cluded test sets corresponding to the TUM-IITKGP

data are labeled as Set1, Set2, ..., Set8, respectively.

4.2 Training and Evaluation of the BGaitR-Net-based

Occlusion Reconstruction Model

The BGaitR-Net model is trained using the OU-ISIR

and the CASIA-B data sets with synthetic occlusions

introduced in the frames of the sequences following a

procedure similar to that described in Section 4.1. As

explained before, the two sub-networks of the BGaitR-

Net, i.e., the CVAE and the LSTM, are trained sepa-

rately. We consider the individual frames present in the

sequences of randomly selected 2200 subjects from the

OU-ISIR data and the frames corresponding to the se-

quences labeled nm-01, nm-02, nm-03, and nm-04 for all

the 124 subjects corresponding to the CASIA-B data

form the gallery set for training the CVAE. Out of these

total 2324 subjects in the combined data, the frames

corresponding to randomly selected 2124 subjects have

been used as the gallery set for training the CVAE,

whereas the frames from the remaining 200 subjects

form the validation set to evaluate the effectiveness of

the model on unknown data. We train the CVAE with

the Adam optimizer considering a learning rate of 0.01

for 100 epochs at which point the model converges.

The Bi-LSTM, on the other hand, is trained on sets
of six latent vectors obtained by running the Encoder

on the corresponding binary silhouette frames of the

CASIA-B data. To prepare the gallery set for training

the Bi-LSTM, we consider the four unoccluded normal

walking sequences, namely, nm-01, nm-02, nm-03, and

nm-04 corresponding to each of the 124 subjects present

in the CASIA-B data. This results in a total of 496

sequences of encoded vectors, from which we extract

different overlapping sub-sequences of six consecutive

frames to form the gallery set of 69560 sequences for

training the Bi-LSTM. To enable the model to pre-

dict missing/occluded frames effectively, we syntheti-

cally occlude 10-70% frames in each sequence present

in this gallery set by adding varying levels of synthetic

occlusion using a procedure similar to that explained

in Section 4.1. Out of these 69560 sequences, 65000

were used as training sequences and the remaining 4560

were used as validation sequences to evaluate the per-

formance of the LSTM on unknown data. The LSTM

is trained with Adam optimizer for 100 epochs using

a learning rate of 0.01 at which point both the train-

ing and validation losses appear to converge and the

training is stopped.

In our first experiment, we visually observe the quality

of reconstruction of our proposed occlusion reconstruc-

tion model on sequences corrupted with occlusion. A

sample result is shown in Fig. 9. using a synthetically

occluded sequence generated from the CASIA-B data.

The first row in Fig. 9 shows a set of frames from

a gait cycle with several partially and fully occluded

frames, whereas the second row corresponds to the

reconstructed sequence after predicting the occluded

frames through our BGaitR-Net. The third row in the

figure corresponds to the ground-truth frames present

in the original sequence. The good reconstruction qual-

ity of our BGaitR-Net is evident by comparing the sec-

ond and the third rows of the figure. Further, to quanti-

tatively evaluate the reconstruction quality of the pro-

posed BGaitR-Net, we use the Sørensen-Dice similarity

score [38] as a metric to measure the degree of simi-

larity between the predicted and ground-truth images.

The test set corresponding to the CASIA-B data con-

structed from sequences labeled nm-05 and nm-06 have

been used for this experiment after corrupting the se-

quences randomly with 10-50% occlusion. The value

of the Dice score lies between ‘0 ’ and ‘1 ’, where a

value close to ‘1 ’ indicates high similarity between the

ground-truth and the predicted frames, whereas a value

close to ‘0 ’ indicates no-similarity between the two. We

observe that the average Dice score of the CV AE af-

ter convergence corresponding to the frames of the val-

idation set of 200 subjects is 0.982, and the average

Dice score computed from the frames of the above-

mentioned test sequences is 0.972, which is quite good

and emphasizes the fact that the proposed BGaitR-Net

is capable of successfully handling moderately high de-

grees of occlusion.

4.3 Evaluation of the Occlusion Reconstruction and

Gait Recognition Framework

To verify the effectiveness of our overall approach,

we evaluate the gait recognition accuracy obtained

on the BGaitR-Net-reconstructed sequences using the

trained GEINet model (as discussed in Section 3.2).

The synthetically occluded sequences from the CASIA-

B data and the statically/dynamically occluded se-

quences from the TUM-IITKGP data have been used

for this experiment. The gallery sets used for training

the GEINet corresponding to each of these data sets

and the test sets considered for the TUM-IITKGP data

have already been discussed in Section 4.1. We experi-

ment with nine different degrees of synthetic occlusion

introduced on the test sequences of the CASIA-B data,
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Fig. 9: The first row shows sample frames from a synthetically occluded sequence, second row corresponds to the BGaitR-Net-
predicted frames, and the third row shows the ground-truth

namely, 0-10%, 10-20%, 20-30%, ..., 80-90%. Results

are shown in terms of both Reconstruction Dice Score

and Rank 1 accuracy in Table 1 for the synthetically

occluded sequences generated from the CASIA-B data.

For real occluded sequences from the TUM-IITKGP

data, we present only the Rank 1 accuracy since ground

truth information is not available to compute the Dice

scores. In the table, the first column corresponds to

Table 1: Gait recognition accuracy and Dice score of recon-
struction for synthetically occluded test sequences generated
from the CASIA-B data considering varying degrees of occlu-
sion and gait recognition accuracy for real occluded sequences
in the TUM-IITKGP data

Dataset
Occ. Reconst. Rank 1

Degree/ Dice Acc.
Set No. Score (%)

≤10 0.99 99.83
10 - 20% 0.98 99.53
20 - 30% 0.95 99.32

CASIA-B 30 - 40% 0.90 97.16
(Synthetically 40 - 50% 0.86 95.00
Occluded) 50 - 60% 0.86 93.21

60 - 70% 0.82 91.22
70 - 80% 0.78 76.65
80 - 90% 0.75 60.05
Set 1 - 96.30
Set 2 - 96.10
Set 3 - 94.80

TUM-IITKGP Set 4 - 94.20
(Real Set 5 - 93.70

Occluded) Set 6 - 93.60
Set 7 - 93.30
Set 8 - 93.00

the data set name, the second column corresponds to

a particular occluded gait sequence, the third column

corresponds to the Dice Score, and the fourth column

corresponds to the Rank 1 recognition accuracy com-

puted from the predictions of the GEINet model. From

the third column, it can be seen that the Dice Score of

recognition is 0.90 or higher if the degree of occlusion is

40% or less. Even for very high 90% degree of synthetic

occlusion, the Dice Score is 0.75, which is quite impres-

sive. From the fourth column of the table, it can be

observed that for the synthetically occluded CASIA-B

data, the Rank 1 accuracy is greater than or equal to

95% for low to moderate degrees of synthetic occlusion,

i.e., when the degree of occlusion is in the range 0-50%,

whereas for 60-70% occlusion the accuracy is 91.22%,

and for very high degree of occlusion, i.e., 80-90%, the

accuracy is 60.05%. Also, the Rank 1 accuracy obtained

for each of the eight occluded test sets corresponding

to the TUM-IITKGP data is 93% or above. The signif-

icantly high recognition accuracy of GEINet on each of

the above occluded test sets once again emphasizes that

the reconstruction quality of our proposed BGaitR-Net

is indeed good.

Next, we study the rank-wise performance improvement

of theGEINet model on the eight real-occluded test sets

of the TUM-IITKGP data and also on the BGaitR-Net-

reconstructed sequences for the same test sets as the

value of the rank is increased from 1 to 5. Correspond-

ing results are presented in Figs. 10(a)-(b) through Cu-

mulative Match Characteristic (CMC) curves. In these

figures, the horizontal axis represents the rank (i.e., the

number of top predictions of the GEINet to be consid-

ered for computing the accuracy) and the vertical axis

corresponds to the recognition accuracy at a particu-

lar rank (in percentage). On comparing Figs. 10(a) and

10(b), it is observed that for each test set, the recog-

nition accuracy is significantly higher at all the ranks

on using the reconstructed sequences. While the maxi-

mum accuracy achieved at Rank 5 for the occluded sets

is 70% (as seen from Fig. 10(a)), that achieved at Rank

5 for the reconstructed sets is 100%. It is further seen

from Fig. 10(b) that at Rank 1, all the reconstructed

test sets show an accuracy greater or equal to 93%, and

the corresponding accuracy at Rank 4 for all the test

sets is higher than 96%. The results on the real oc-

cluded sequences of the TUM-IITKGP data are indeed

encouraging and also emphasizes the usefulness of our

BGaitRNet-based occlusion reconstruction approach.

Since the Bi-LSTM sub-network is the core frame-

work for performing reconstruction in our proposed

BGaitR-Net, in the next experiment we test the ro-

bustness of this model by observing how much it gen-

eralizes across different training data sets. The training

set corresponding to the CASIA-B data has been used
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Fig. 10: CMC curves showing rank-wise improvement in
recognition accuracy of GEINet on (a) the eight occluded test
sets present in the TUM-IITKGP data and (b) on the same
sequences after reconstruction using BGaitR-Net

for this experiment (refer to Section 4.2). Specifically,

we use stratified K-fold cross-validation, i.e., we par-

tition the entire data set of 69560 training sequences

extracted from this data into K equal parts randomly,

select (K− 1) parts for training the Bi-LSTM, and one

of the parts as the validation set to compute the aver-

age Dice score. The same trained model of CVAE as

considered in the previous experiments has also been

used here to transform the images into latent space and

convert the Bi-LSTM -predicted vectors back to the im-

age space. This process is repeated K different times to

obtain K different average Dice score values. We con-

sider five different values for K, i.e., 2, 3, 5, 10, 16, and

for the above-mentioned five values of K, the training

batches are formed with 50%, 66.7%, 80%, 90%, and

93.8% samples from the complete data set of 69560 se-

quences, respectively. The K readings thus obtained are

then plotted using a box plot in Fig. 11 that helps in

visualizing the robustness of the Bi-LSTM model used

in the BGaitR-Net. It can be seen from the plot that

there is a steady increment in the average Dice score

from 0.93 (when trained on 50% of the data set) to

Fig. 11: Average Dice scores after training the Bi-LSTM

model with K-fold cross-validation for the following values
of K: 2, 3, 5, 10, 16

0.96 (when trained on 93.8% of the data set). Also, the

range of the average Dice score values obtained after

training the Bi-LSTM K times for any value of K is

quite small which highlights that Bi-LSTM generalizes

well for varying training data sets.

Next, we make a comparative study of the reconstruc-

tion quality of our proposed BGaitR-Net with that of

the reconstruction algorithms specified in some popular

occlusion handling methods in gait recognition, namely

[5–7] and also some recent video frame prediction meth-

ods that exploit the spatio-temporal information from

sequences, namely [39–41]. Among the recent frame pre-

diction methods, in [39] a model termed as E3D-LSTM

is discussed that integrates 3D convolutions into RNNs,
which makes local perceptrons of RNNs motion-aware

and enables the memory cells to store better short-term

features. For long-term relations, each memory state in-

teracts with its historical records via a gate-controlled

self-attention module. The estimated cell state and the

spatio-temporal memory state are next aggregated to

make the frame prediction. On the other hand, in [40], a

dual-branch Deep model termed as the PhyDNet is pre-

sented that jointly learns the latent space to disentan-

gle physical dynamics from residual information. The

physical dynamics are modeled through PhyCell using

a prediction correction paradigm, while the residual in-

formation is modeled using a ConvLSTM. The outputs

from both the above units are aggregated to predict the

future frame. The MAU model introduced in [41] uses

two modules, namely an attention module and a fusion

module. The fusion module is utilized to aggregate the

motion information from the attention module and the

current spatial state to predict the next frame. The syn-

thetically occluded sequences generated by introducing
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50% occlusion on the test set of the CASIA-B data has

been used in this experiment. It may be noted that the

approaches discussed in [5, 6] carry out reconstruction

of the GEI features, whereas each of the other tech-

niques used in this comparative study performs frame-

level reconstruction. For a fair comparison, in this ex-

periment we compare the quality of the GEIs computed

from the predicted frames by our method and each of

[7, 39–41] with that of the reconstructed GEI s gener-

ated by [5, 6] in terms of average Dice score. Fig. 12

presents the corresponding results through a bar plot

The height of each bar in the plot represents the average

Dice Score given by the corresponding method stated

along the horizontal axis. From the plot, it can be seen

Fig. 12: Comparative study of the different reconstruction
algorithms in terms of average Dice score of GEI

that the GEI reconstruction quality using the proposed

BGaitR-Net is the best among all the other approaches

used in the study. The reconstruction quality of the re-

cent video frame prediction methods [39–41] and also

[5, 6] are also relatively good and closely comparable to

each other. However, the method in [7] performs poor

quality reconstruction as is evident from the average

Dice score value. This is mostly due to the fact that

[7] approximates the walking features over a gait cycle

with a Gaussian, which cannot be used to effectively

reconstruct sequences corrupted with moderately high

50% synthetic occlusion, as in the present study.

We further perform a comparative study of our work

with the same approaches used in the previous exper-

iment as well as with some other popular gait recog-

nition techniques with and without occlusion handling

mechanism and observe the overall Rank 1 gait recog-

nition accuracy values given by these different meth-

ods on the test sets of the TUM-IITKGP and 50%

synthetically occluded CASIA-B data sets. Specifically,

we categorize the existing approaches into three differ-

ent groups, namely (i) gait recognition methods with

occlusion handling mechanism, (ii) video frame pre-

diction methods, and (iii) gait recognition methods

without occlusion handling mechanism. The first cat-

egory of methods include [5, 6] that perform recog-

nition after reconstructing the GEI through a CNN,

and [4, 42] that attempt to perform recognition without

reconstructing the occlusion. In this category, we also

study the accuracy given by two recent non-occlusion

handling methods, namely, [15] and [24] on the se-

quences reconstructed by our BGaitR-Net. The video

frame prediction methods include [39–41] for each of

which the gait recognition accuracy is computed using

GEINet [22]. Among the non-occlusion handling meth-

ods, we use some popular primitive approaches, namely,

[11, 12, 14, 22, 23]. Results are shown in Table 2 in

terms of Rank 1 accuracy for both the TUM-IITKGP

and the CASIA-B datasets. Each reported accuracy

Table 2: Comparative analysis of the proposed work with
existing approaches on the real occluded sequences of the
TUM-IITKGP data and synthetically occluded sequences of
the CASIA-B data in terms of Rank 1 accuracy

Category Method
Rank 1 Acc. (%)
TUM- CASIA

IITKGP -B

Proposed BGaitR-Net+[22] 97.32 98.17

Methods
with Occl.
Handling
Mechanism

BGaitR-Net+[15] 96.37 96.77
BGaitR-Net+[24] 95.56 97.58

[5] 78.92 81.45
[6] 80.00 92.74
[42] 77.65 89.51
[4] 85.32 89.51
[7] 68.57 75.23

Frame
Prediction
Methods

[39]+[22] 47.66 91.54
[40]+[22] 63.33 87.66
[41]+[22] 76.66 94.36

Methods
without
Occl.
Handling
Mechanism

[23] 76.42 74.19
[22] 76.79 63.71
[11] 65.71 56.45
[12] 70.23 79.83
[14] 73.54 62.10

value in the table is obtained by training the corre-

sponding gait recognition model on the complete train-

ing set corresponding to either the TUM-IITKGP data

or the CASIA-B data, as explained in Section 4.1. The

effectiveness of the proposed BGaitR-Net-based occlu-

sion reconstruction method can once again be inferred

from the gait recognition accuracy values shown in the

table. It can be seen that fusion of BGaitR-Net with

existing gait recognition methods, namely [15, 22, 24]

results in obtaining a significantly high Rank 1 accu-

racy (> 95%) for both synthetically and real-occluded

test sets. In comparison, the accuracy values given by

the other existing occlusion handling methods in gait

recognition used in the comparative study, namely [4–
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6, 42] on the same test sets are quite less. It may also be

noted that, each of the video frame prediction methods,

i.e., [39–41] combined with GEINet [22] shows a signif-

icantly higher recognition accuracy for the CASIA-B

data than the TUM-IITKGP data. This is mostly due

to the fact that the normalized binary silhouette frames

obtained from the TUM-IITKGP data are quite noisy

and the encoding techniques used in these approaches

use Vanilla Autoencoder that is not effective enough for

noisy inputs. In contrast, the Variational Autoencoder

along with the conditional key pose vector, as used in

the proposed BGaitR-Net model, helps in obtaining a

better embedding of the binary silhouette frames result-

ing in high quality reconstruction even from the noisy

TUM-IITKGP data. As a result, the Rank 1 accuracy

given by our approach on this data is 76.66%, which im-

proves over the best-performing video frame prediction

method, i.e., [41] by more than 21%. Also, as expected,

the recognition accuracy of each of the non-occlusion

handling methods [11, 12, 14, 22, 23] is quite less for oc-

cluded test sequences since these methods are designed

to work well only if at least a complete gait cycle is

available.

4.4 Ablation Study

The CVAE component of the proposed BGaitR-Net

reconstruction model is responsible for encoding the

input frames of a gait sequence with the help of the

conditional key pose vector c and decoding the pre-

dicted frames. This model is trained with a binary

cross-entropy-based reconstruction loss Lrec (refer to

(4)) and a KL-divergence loss Lkl (refer to (5)). On

the other hand, the Bi-LSTM component of the pro-

posed BGaitR-Net is trained with MSE loss Lmse (re-

fer to (8)), and it is responsible for reconstructing the

frames of the sequence by fusing the spatio-temporal in-

formation contained in the CVAE-encoded frames along

with the key pose information. In the ablation study,

we study the importance of the individual loss func-

tions and the conditional key pose vector c used dur-

ing training the CV AE. Basically, we eliminate one of

the three components among Lrec, Lkl, c and train the

CV AE, and next observe the average Dice score of

reconstruction on the validation set of the CASIA-B

data. Corresponding results are presented in Table 3.

In the table, the first row corresponds to the average

Dice score obtained by eliminating the component c

and training the CV AE with the complete loss func-

tion given in (6). The second and third rows correspond

to results obtained by retaining c but by eliminating

the components Lkl and Lrec, respectively. Finally, the

fourth row corresponds to the average Dice score on

the validation set using the proposed model where each

Table 3: Ablation study to observe the effect of the individual
loss terms and the conditional key pose vector while training
the CVAE component of the proposed BGaitR-Net

Model Components Avg. Dice Score

Lcvae without conditional vector c
0.749

(i.e., removing c)
Lrec with conditional vector c

0.977
(i.e., removing Lkl)
Lkl with conditional vector c

0.283
(i.e., removing Lrec)
Lcvae with conditional vector c

(Proposed)
0.982

of the above components is retained during the train-

ing phase. The results presented in the table indicate

that the combined loss term Lcvae given by (6) along

with the conditional key pose vector c help in obtain-

ing reconstructed frames of highest quality than each

of the other configurations used in the study. Without

using the vector c, an average Dice score of only 0.749

is obtained, whereas use of the conditional vector c im-

proves the average Dice score by 0.233. Also, use of the

combined loss term Lcvae results in better Dice score

values than either of the two individual loss terms Lkl

and Lrec.

5 Conclusions and Future Work

In this work, we focus on gait recognition in the pres-

ence of occlusion. Given an occluded gait sequence we

use a VGG-16 model to detect the occluded frames in

the sequence, and also a database of key poses to map

the unoccluded frames of the sequence to the appro-

priate key poses. The novelty of the work is propos-

ing a new and effective Deep Neural Network-based ar-

chitecture, namely BGaitR-Net, to reconstruct the oc-

cluded frames present in a corrupted gait sequence. Al-

though we have used the popular GEINet model [22] to

carry out recognition from the reconstructed sequences,

our BGaitR-Net can be conveniently integrated with

any other effective gait recognition model to carry

out recognition accurately. The proposed BGaitRNet

is based on stacking of two Deep Neural Network ar-

chitectures: (a) a Convolutional Variational Autoen-

coder (CVAE) and (b) a Bidirectional Long-Short Term

Memory (Bi-LSTM), and it has been seen to per-

form satisfactorily even if 60-70% frames in a gait cy-

cle are missing/occluded. The Encoder-Decoder model

used here, i.e., the CVAE employs the key walking pose

corresponding to each frame of a set of sequential bi-

nary silhouettes as conditional vectors to provide com-

pact encoded representations. The Bi-LSTM model is

next used to filter the above-encoded sequence of frames

to predict a missing/occluded frame by exploiting the

spatio-temporal information available from the unoc-

cluded frames of the sequence along with the key pose
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information. Experimental results show that our overall

reconstruction and recognition framework performs sig-

nificantly accurately both on the synthetically occluded

CASIA-B data and on the real static/dynamic occluded

sequences present in the TUM-IITKGP data, and out-

performs the existing techniques to occlusion handling

in gait recognition by a significantly large margin. In

the future, our work needs to be evaluated on more

extensive real-occluded data sets.
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